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How to use this eBook

Welcome to Concepts & Applications in Spatial Epidemiology (EPI 563) Fall
2023 Semester! This eBook is one of several sources of information and sup-
port for your progress through the semester. For an overview of the course,
expectations, learning objectives, assignments, and grading, please review the
full course syllabus on Canvas. This eBook serves to provide a ‘jumping off
point’ for the content to be covered each week. Specifically, the content herein
will introduce key themes, new vocabulary, and provide some additional detail
that is complementary to the asynchronous (pre-recorded) video lectures, and
foundational to the synchronous (in class) work.

Strategy for using this eBook

In the main body of the eBook, there is a separate module or chapter for each
week. This content should be read in preparation for each week’s material.
At the end of the eBook (e.g. after the Appendices), there is a section with each
week’s Lab Handout.
In general, the content within each week’s main section is divided into two parts
focusing on spatial thinking and spatial analysis. This dichotomy does not
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always hold, but in broad terms you can expect these sections to be more specific
to content in class on Tuesday versus Thursday respectively.

• Spatial thinking for epidemiology: This section introduces vocabulary, con-
cepts, and themes that are important to the incorporation of spatialized
or geo-referenced data into epidemiologic work. At a minimum, plan to
read this content prior to class Tuesday, although you will likely benefit
from reading both sections before Tuesday.

• Spatial analysis for epidemiology: This section is more focused on data
management, visualization, spatial statistics, and interpretation. This
content is relevant for our work together on Tuesday’s, but is essential for
successful work in the Thursday lab activities. You are not expected to
actually execute the code in the eBook before lab on thursday!. The code
is a primer for activities i class.

• Weekly Lab Handout: This is a new addition to the eBook in 2022. Note
that there is a lot of overlap between the spatial analysis section of the
main portion of the eBook, and the lab handout. That overlap is by design!
While there is overlap, the Lab Handout will often contain more specificity
and detail about code or analysis that is easier to absorb when you are
interactively working through it.

Throughout the book some concepts or ideas may be highlighted with call-out
blocks.

This block denotes a potential pitfall or area of caution.

This block denotes an additional bit of information or additional
idea to note about the topic at hand.

This block denotes a tip or advice for best practices or efficiency.

Please note that I will be continually updating the eBook throughout the
semester, so if you choose to download, please double-check the Last updated
date (in colored bar at bottom of screen) to be sure you have the most recent
version.

This eBook is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Download eBook

To download a PDF of the full version of this eBook click here. Note that the
eBook may be intermittently updated through the semester and you may (or
may not) care to re-download the most updated version. Note the date last
updated in the footer of each page to see when versions changed.
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Part I

Getting ready…
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Software installation

The information in this module follows on the pre-class video on setting up R
and RStudio on your computer.

Installing R on your computer

As of August 2023, the most up-to-date version of R is 4.3.1. The R Project for
Statistical Computing are continually working to update and improve R, and as
a result there are new versions 1-2 times per year.

If you already have R installed, you can open the console and check your current
version by typing (or copy/pasting) this: R.Version()$version.string

If you do not have R, or have an older version than that listed above, you can
install or update R by going to the R repository: https://www.r-project.org/.
Note that there are many ‘mirrors’ or servers where the software is stored.
Generally it is wise to select one that is geographically close to you, although
any should work in theory. One mirror that is relatively close to Atlanta is here:
http://archive.linux.duke.edu/cran/

0.0.1 R installation notes for Mac OS users

If you click on Mac OS from the cran webpage, you will see several differ-
ent options for installation. Specifically, there is a versions for Mac with Intel
processors, and a different version for Mac OS with Apple Silicon (e.g. M1 chip).
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How do I know what chip is in my Mac?
If you do not know whether you have Intel or Apple processors,
click on the Apple icon and choose “About this Mac”. In the
resulting window look for either of these:

– Chip Apple M1 Pro means that you have Apple Silicon.
You should download that has arm64 in the name. The
description will say it is for native Apple silicon.

– Processor xxx where xxx is an Intel chip. This means you
have the older Intel chip, and you should download the R
installer that is for Intel-based Macs.

0.0.1.1 Installing Xcode (Mac only)

There are some packages that require compiling done outside of R. You may
need the utility package Xcode to do this. This is not an R package, but instead
an app available from the Apple Store. Open the Apple Store, search for Xcode
and install.

Xcode is BIG! If you don’t have much storage on your hard drive
this might be a problem. You have two options:

1. Don’t install Xcode and see what happens. Depending on
other configurations on your machine, it might not be nec-
essary. You will know there is a problem if some packages
do not install.

2. Try install a “slimmer” version of Xcode by following these
instructions.

0.0.2 R installation for Windows OS users

If you are using a computer running Microsoft Windows OS, you will click on
the Windows option on the CRAN website. Choose the option that reads base
and click on the most recent downloader.

0.0.2.1 Installing Rtools43 (Windows Only)

While most of your work with R packages (e.g. installing new ones) can be
done with the base-R tools, there are instances where an installation of a new
package requires a more complex ‘unpacking’ of the code or installation from
github. Windows machine may require additional tools to do this work. Luckily

https://mac.install.guide/commandlinetools/index.html
https://mac.install.guide/commandlinetools/index.html
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there is a package for that! It is called Rtools43 (assuming you have already
downloaded and installed R 4.2), and you should install that before you install
the packages below.

Note that Rtools43 is not a package within R, but instead is a Windows utility
installed outside of R itself.

If you are running Windows, navigate back to the CRAN website, choose Win-
dows, and then – instead of clicking on base – click on Rtools and follow the
instructions. Specifically, be sure your version of Rtool aligns with your version
of R. For example, if you have R 4.3.1, then choose Rtools43.

Installing RStudio on your computer

R-Studio is one of several integrated development environments (IDE) for work-
ing in R. That means it is a wrapper around the core R functionality that makes
coding and project work in R much easier than it would be without. We develop
projects or analyses using R within an IDE such as R-Studio. Using R-Studio lets
us have robust code-editing and debugging, code syntax highlighting (e.g. col-
oring different words according to their use, and identifying possible errors),
and some assistance with file management, working in larger projects, and out-
putting results.

The current version of RStudio 2023.06.1+524. If you do not have RStudio or
have an up-to-date version, please install or update it.

TO INSTALL: go to https://posit.co/download/rstudio-desktop/

TO UPDATE: Open RStudio and go to Help Menu and choose ‘Check for
Updates’

R-Studio Cheat sheet provides a quick reference guide for many
of the ways that R-Studio makes your work with R easier.
In fact, there are “cheat sheets” for lots of packages and utilities
in R; browse some of them here.

https://cran.r-project.org
https://posit.co/download/rstudio-desktop/
https://raw.githubusercontent.com/rstudio/cheatsheets/main/rstudio-ide.pdf
https://www.rstudio.com/resources/cheatsheets/
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Installing packages for this
course

While base R has a great deal of essential functionality, most of the power of R
comes from the rapidly growing list of user-created and contributed ‘packages’.
A package is simply a bundle of functions and tools, sometimes also including
example datasets, basic documentation, and even tutorial ‘vignettes’. You can
see all the official R packages by going here: https://cran.r-project.org/web/
packages/.

The most common way to install package in R is with the install.packages()
command. For instance to install the package ggplot2 you do this:

install.packages("ggplot2")

Remember that you only need to install a package once (although you may have
to update packages occasionally – see the green Update button in the Packages
tab in R Studio). When you want to actually use a package (for example
ggplot2) you call it like this:

library(ggplot2)

If your call to library() is working, nothing visible happens. However if you
see errors, they might be because your package is out of date (and thus needs to
be updated/reinstalled), or because some important dependencies are missing.
Dependencies are other packages on which this package depends. Typically
these are installed by default, but sometimes something is missing. If so, simply
install the missing package and then try calling library(ggplot2) again.

Notice that for the function install.packages('yourPackage')
you must use quotes around the package name. In contrast for
the function library(yourPackage) you do not use quotes.
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As you submit each installation request, note the output in your
R console. If you get a warning that says installation was not
possible because you are missing a package ‘yourPackage’, that
suggests you are missing a dependency (e.g. something the main
package needs to work correctly). Try installing the package men-
tioned in the error. If you have trouble, reach out to the TA’s!

Installing packages used for general data science

For the rest of this page, copy and paste the provided code in order to install
packages necessary for this course. Notice if you hover to the right of a code-
chunk in the html version of the eBook, you will see a copy icon for quick copying
and pasting.

Although you are copying and pasting the code, take a moment
to look at the output. Did you get any error messages that a
package did not install? Sometimes you see a warning message
announcing something, but perhaps the package installed ok. If
there is an error message, the package probably did not install.
To see if a package was installed, try loading it by typing
library(yourPackage). If nothing happens (no errors) then all
is good!

These packages will support some of our general work in R:

• rmarkdown allows the creation of mixed output documents that combine
code, documentation and results in a single, readable format.

• The packages tinytex and knitr are necessary for creating the R docu-
ments including PDF output that will be required for submitting assign-
ments.

• We will use many data manipulation tools from the tidyverse. You
can learn more about the tidyverse here: https://tidyverse.tidyverse.
org/, and you can see applications of tidyverse packages in the R for
Epidemiologists Handbook. The tidyverse is actually a collection of
data science tools including the visualization/plotting package ggplot2
and the data manipulation package dplyr. For that reason, when you
install.packages('tidyverse') below, you are actually installing mul-
tiple packages!

• The packages here and pacman are utilities to help simplify file pathnames
and package loading behavior.

https://tidyverse.tidyverse.org/
https://tidyverse.tidyverse.org/
https://epirhandbook.com/index.html
https://epirhandbook.com/index.html
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install.packages('tidyverse')
install.packages(c('pacman', 'here'))
install.packages(c('tinytex', 'rmarkdown', 'knitr'))
tinytex::install_tinytex()
# this function installs the tinytex LaTex on your
# computer which is necessary for rendering (creating) PDF's

Installing packages use for geographic data

There are many ways to get the data we want for spatial epidemiology into
R. Because we often (but don’t always) use census geographies as aggregating
units, and census populations as denominators, the following packages will be
useful. They are designed to quickly extract both geographic boundary files
(e.g. ‘shapefiles’) as well as attribute data from the US Census website via an
API.

install.packages(c('tidycensus','tigris'))

help('census_api_key','tidycensus')

NOTE: To be able to interact with the Census bureau API
through R, you will need a personalized “API key”. When you
enter the second line of code above (e.g. the help() function),
you will see information on how to:

1. Request a key from the Census bureau
2. Enter your cutoms key into your machine so that it is avail-

able when needed.

We will not need the Census API key for a couple of weeks, but
it is good to start now and ask for help if you have trouble!

Installing packages used for spatial data manipu-
lation & visualization

This section installs a set of tools specific to our goals of importing, exporting,
manipulating, visualizing, and analyzing spatial data.
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• The first line of packages have functions for defining, importing, exporting,
and manipulating spatial data.

• The second line has some tools we will use for visualizing spatial data
(e.g. making maps!).

install.packages(c('sp', 'sf', 'raster', 'RColorBrewer', 'OpenStreetMap'))
install.packages(c('tmap', 'tmaptools'))

BEWARE
There are many large shifts currently underway in R architecture
for spatial analysis. As we will learn, for years we have been
shifting away from an older data class defined in the package sp
to a newer one called sf.
In addition to that shift, at the end of 2023 several packages that
helped link older R functions to standard GIS libraries outside of
R are being retired. These include maptools, rgeos and rgdal.
Newer packages do not rely on them, but some older packages have
not been updated. Note that sp, rgeos, rgdal, and maptools are
all included in the list above. Each year we uncover new opportu-
nities and new bugs related to unanticipated package dependen-
cies caused by some packages aging out. We’ll see what bumps
we run into this year!

Installing packages used for spatial analysis

Finally these are packages specifically for spatial analysis tasks we will carry
out.

install.packages(c('spdep', 'CARBayes', 'sparr', 'spatialreg', 'DCluster', 'SpatialEpi', 'smerc'))
install.packages(c('GWmodel', 'spgwr') )

https://r-spatial.org/r/2022/04/12/evolution.html
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Chapter 1

Locating Spatial
Epidemiology

1.1 Getting Ready

1.1.1 Learning objectives

Table 1.1: Learning objectives by weekly module

After this module you should be able to…
Explain the potential role of spatial analysis for epidemiologic thinking and
practice.
Produce simple thematic maps of epidemiologic data in R.

1.1.2 Additional Resources

• Geocomputation with R by Robin Lovelace. This will be a recurring
‘additional resource’ as it provides lots of useful insight and strategy for
working with spatial data in R. I encourage you to browse it quickly now,
but return often when you have questions about how to handle geographic
data (especially of class sf) in R.

• An introduction to the ggplot2 package. This is just one of dozens of
great online resources introducing the grammar of graphics approach to
plotting in R.

• A basic introduction to the tmap package This is also only one of many
introductions to the tmap mapping package. tmap builds on the grammar
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of graphics philosophy of ggplot2, but brings a lot of tools useful for
thematic mapping!

• R for SAS users cheat sheet

1.1.3 Important Vocabulary

1.2 Spatial Thinking in Epidemiology

When first learning epidemiology, it can be difficult to distinguish between the
concepts, theories, and purpose of epidemiology versus the skills, tools, and
methods that we use to implement epidemiology. But these distinctions are
foundational to our collective professional identity, and to the way we go about
doing our work.

For instance, do you think of epidemiologists as data analysts, scientists, data
scientists, technicians or something else? These questions are bigger than we
can address in this class, but their importance becomes especially apparent
when learning an area such as spatial epidemiology. This is because there is a
tendency for discourse in spatial epidemiology to focus primarily on the data and
the methods without understanding how each of those relate to the scientific
questions and health of population for which we are ultimately responsible.
Distinguishing these threads is an overarching goal of this course, even as we
learn the data science and spatial analytic tools.

One quite simplistic but important example of how our questions and methods
are inter-related is apparent when we think of data. Data is central to quan-
titative analysis, including epidemiologic analysis. So how is data different in
spatial epidemiology?

https://raw.githubusercontent.com/rstudio/cheatsheets/main/sas-r.pdf
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1.2.1 Unit of analysis

The first thing that might come to mind is that in this course and your related
future spatial epi work, there is explicitly geographic or spatial measures con-
tained within our data. The content of the spatial data is distinct: the addition
of geographic or spatial location may illuminate otherwise aspatial attributes.
But even more fundamental than the content is thinking about the unit of
analysis.

It is likely that in many other examples in your epidemiology coursework, the
explicit (or sometimes implicit) unit of analysis has been the individual person.
Spatial epidemiology can definitely align with individual-level analysis. But as
we will see, common units we observe and measure in spatial epidemiology –
and therefore the units that compose much of our data – are not individuals
but instead are geographic units (e.g. census tract, county, state, etc) and by
extension the collection or aggregation of all the individuals therein.

This distinction in unit of analysis has important implications for other
epidemiologic concerns including precision, bias, and ultimately for inference
(e.g. the meaning we can make from our analysis), as we’ll discuss throughout
the semester.

One concrete implication of the above discussion is that you should always be
able to answer a basic question about any dataset you wish to analyze: “what
does one row of data represent?” A row of data is one way to think of the unit
of analysis, and often (but not always) in spatial epidemiology a row of data is
a summary of the population contained by a geographic unit or boundary.

Said another way it is an ecologic summary of the population. As stated above,
this is only the most simplistic example of how and why it is important to
not only learn the spatial statistics and methods, but to also maintain the
perspective of epidemiology as a population health science. To advance public
health we need good methods but we also need critical understanding of the
populations we support, the data we analyze, and the conclusions we can reliably
draw from our work.

As we move through the semester, I encourage you to dig deep into how methods
work, but also to step back and ask questions like “Why would I choose this
method?” or “What question in epidemiology is this useful for?”

1.3 Spatial Analysis in Epidemiology

1.3.1 Spatial data storage formats

If you have worked with spatial or GIS data using ESRI’s ArcMap, you will
be familiar with what are called shapefiles. This is one very common format
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for storing geographic data on computers. ESRI shapefiles are not actually a
single file, but are anywhere from four to eight different files all with the same
file name but different extensions (e.g. .shp, .prj, .shx, etc). Each different
file (corresponding to an extension) contains a different portion of the data
ranging from the geometry data, the attribute data, the projection data, an
index connecting it all together, etc.

What you may not know is that shapefiles are not the only (and in my opin-
ion definitely not the best) way to store geographic data. In this class I
recommend storing data in a format called geopackages indicated by the .gpkg
extension.

Geopackages are an open source format that were developed to be functional
and portable across devices, including mobile devices. They are useful when we
are storing individual files in an efficient and compact way.

To be clear, there are many other formats and I make no claim that geopackages
are the ultimate format; they just happen to meet the needs for this course, and
for much of the work of spatial epidemiologists. It is worth noting that many GIS
programs including ArcMap and QGIS can both read and write the geopackage
format; so there is no constraint or limitation in terms of software when data
are stored in .gpkg format.

1.3.2 Representing spatial data in R

The work in this course assumes that you are a basic R user; you do not need
to be expert, but I assume that you understand data objects (e.g. data.frame,
list, vector), and basic operations including sub-setting by index (e.g. using
square brackets to extract or modify information: []), base-R plotting, and
simple regression modeling. If you are not familiar with R, you will need to
do some quick self-directed learning.

Here are some good online resources for R skills, and the instructor
and TA’s can point you to additional resources as needed:

– The Epidemiologist R Handbook
– R for Data Science, particularly the introductory chapters
– R Tutorial

Just as our conceptualization of, or thinking about, data in spatial epidemiology
requires some reflection, the actual structure and representation of that data
with a computer tool such as R also requires some attention.

Specifically, spatial data in R is not automatically the same as conventional
aspatial epidemiologic data that is often arranged as a rectangular data.frame
(e.g. like a spreadsheet where rows are observations and columns are variables).

https://epirhandbook.com/index.html
https://r4ds.had.co.nz/introduction.html
http://www.r-tutor.com/r-introduction
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While spatial data are more complex than just a spreadsheet, it does not need
to be as complex as spatial data in software platforms like ESRI’s ArcMap.

To be spatial, a dataset must have a representation of geography, spatial lo-
cation, or spatial relatedness, and that is most commonly done with either a
vector or raster data model (see description above in vocabulary). Those spatial
or geographic representations must be stored on your computer and/or held in
computer memory, hopefully with a means for relating or associating the indi-
vidual locations with their corresponding attributes. For example, we want to
know the attribute (e.g. the count of deaths for a given place), and the location
of that place, and ideally we want the two connected together.

Over the past 10+ years, R has increasingly been used to analyze and visualize
spatial data. Early on, investigators tackling the complexities of spatial data
analysis in R developed a number of ad hoc, one-off approaches to these data.
This worked in the short term for specific applications, but it created new prob-
lems as users needed to generalize a method to a new situation, or chain together
steps. In those settings it was not uncommon to convert a dataset to multiple
different formats to accomplish a task sequence; this resulted in convoluted and
error-prone coding, and lack of transparency in analysis.

An eventual response to this early tumult was a thoughtful and systematic
approach to defining a class of data that tackled the unique challenges of spatial
data in R. Roger Bivand, Edzer Pebesma and others developed the sp package
which defined spatial data classes, and provided functional tools to interact with
them.

The sp package defined specific data classes to contain or represent points, lines,
and polygons, as well as raster/grid data. Each of these data classes can contain
geometry only (these have names like SpatialPoints or SpatialPolygons)
or could contain geometry plus related data attributes (these have names like
SpatialPointsDataFrame or SpatialPolygonsDataFrame).

Each spatial object can contain all the information spatial data might include:
the spatial extent (min/max x, y values), the coordinate system or spatial pro-
jection, the geometry information, the attribute information, etc.

Because of the flexibility and power of the sp* class of objects, they became
a standard up until the last few years. Interestingly, it was perhaps the so-
phistication of the sp* class that began to undermine it. sp* class data was
well-designed from a programming point of view, but was still a little cumber-
some (and frankly confusing) for more applied analysts and new users.

Analysis in spatial epidemiology is not primarily about computer programming,
but about producing transparent and reliable data pipelines to conduct valid,
reliable, and reproducible analysis. Thus, epidemiologists and other data scien-
tists desired spatial tools that could be incorporated into the growing toolbox
of data science tools in R.

These calls for a more user-friendly and intuitive approach to spatial data led
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the same team (e.g. Bivand, Pebesma, others) to develop the Simple Features
set of spatial data classes for R. Loaded with the sf – for simple features –
package, this data format has quickly become the standard for handling spatial
data in R.
The power of the sf class, as discussed below, is that it makes spatial data
behave like rectangular data and thus makes it amenable to manipulation using
any tool that works on data.frame or tibble objects. Recognizing that many
users and functions prefer the older sp* objects, the sf package includes a
number of utility functions for easily converting back and forth.

In this class we will use sf* class objects as the preferred data
class, but because some of the tools we’ll learn have not been
updated recently and thus still require sp*, we will occasionally
go back and forth.

sf* data classes are designed to hold all the essential spatial information (pro-
jection, extent, geometry), but do so with an easy to evaluate data.frame
format that integrates the attribute information and the geometry information
together. The result is more intuitive sorting, selecting, aggregating, and visu-
alizing.

1.3.3 Benefits of sf data classes

As Robin Lovelace writes in his online eBook, Gecomputation in R, sf data
classes offer an approach to spatial data that is compatible with QGIS and
PostGIS, important non-ESRI open source GIS platforms, and sf functionality
compared to sp provides:

1. Fast reading and writing of data
2. Enhanced plotting performance
3. sf objects can be treated as data frames in most operations
4. sf functions can be combined using %>% pipe operator and works well

with the tidyverse collection of R packages (see Tips for using dplyr for
examples)

5. sf function names are relatively consistent and intuitive (all begin with
st_)

1.3.4 Working with spatial data in R

Here and in lab, one example dataset we will use, called ga.mvc quantifies the
counts and rates of death from motor vehicle crashes in each of Georgia’s 𝑛 = 159
counties. The dataset is vector in that it represents counties as polygons with
associated attributes (e.g. the mortality information, county names, etc).

https://geocompr.robinlovelace.net/
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1.3.4.1 Importing spatial data into R

It is important to distinguish between two kinds of data formats. There is a
way that data is stored on a computer hard drive, and then there is a way that
data is organized and managed inside a program like R.

The shapefiles (.shp) popularized by ESRI/ArcMap is an example of a format
for storing spatial data on a hard drive. In contrast, the discussion above about
the sf* and sp* data classes refer to how data is organized inside R.

Luckily, regardless of how data is stored on your computer, it is possible to
import almost any format into R, and once inside R it is possible to make it
into either the sp* or sf* data class. That means if you receive data as a .shp
shapefile, as a .gpkg geopackage, or as a .tif raster file, each can be easily
imported.

All sf functions that act on spatial objects begin with the prefix st_. Therefore
to import (read) data we will use st_read(). This function determines how to
import the data based on the extension of the file name you specify.

Look at the help documentation for st_read(). Notice that the first argument
dsn=, might be a complete file name (e.g. myData.shp), or it might be a folder
name (e.g. mygeodatabase.gdb). So if you had a the motor vehicle crash data
saved as both a shapefile (mvc.shp, which is actually six different files on your
computer), and as a geopackage (mvc.gpkg) you can read them in like this:

# this reads in the shapefile
mvc.a <- st_read('GA_MVC/ga_mvc.shp')

# this reads in the geopackage
mvc.b <- st_read('GA_MVC/ga_mvc.gpkg')

We can take a look at the defined data class of the imported objects within R:

class(mvc.a)

## [1] "sf" "data.frame"

class(mvc.b)

## [1] "sf" "data.frame"

Notice how the two objects have the same class (e.g. type of data stored within
R), even though they were two different kinds of files stored on the computer:
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one was a shapefile and one a geopackage. This is because st_read() can
automatically detect the storage format based on the extension, and use the
appropriate interpreter to import that data. This is nice because it means you
can bring many types of spatial data into R!

You will also notice that when we examined the class() of each object, they are
each classified as both sf and data.frame class. That is incredibly important,
and it speaks to an elegant simplicity of the sf* data classes!

That the objects are classified as sf is perhaps obvious because it is a spatial
object; but the fact that each object is also classified as data.frame means that
we can treat the object for the purposes of data management, manipulation and
analysis as a relatively simple-seeming object: a rectangular data.frame.

How does that work? We will explore this more in lab but essentially each
dataset has rows (observations) and columns (variables). We can see the vari-
able/column names like this:

names(mvc.a)

## [1] "GEOID" "NAME" "MVCRATE_17" "geometry"

names(mvc.b)

## [1] "GEOID" "NAME" "MVCRATE_17" "geom"

We can see that each dataset has the same attribute variables (e.g. GEOID, NAME,
MVCRATE_17), and then a final column called geometry in one and called geom
in another.

These geometry columns are different from your usual run-of-the-mill column
variables in that they don’t hold a single value. Instead, each ‘cell’ in those
columns actually contains an embedded list of 𝑥, 𝑦 coordinates defining the
vertices of the polygons for each of Georgia’s counties. So all of the spatial
location information for each row is contained in that single variable called geom
(or alternately, geometry).

Another way to learn about an sf object is to use the head() function. In
addition to displaying the top six rows of data (which is the typical behavior of
the head() function), for sf objects head() will also print some of the important
metadata about the file.

head(mvc.a)
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## Simple feature collection with 6 features and 3 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -84.64195 ymin: 31.0784 xmax: -82.04858 ymax: 34.49172
## Geodetic CRS: WGS 84
## GEOID NAME MVCRATE_17 geometry
## 1 13001 Appling County, Georgia 53.99276 MULTIPOLYGON (((-82.55069 3...
## 2 13003 Atkinson County, Georgia 35.96260 MULTIPOLYGON (((-83.141 31....
## 3 13005 Bacon County, Georgia 0.00000 MULTIPOLYGON (((-82.62819 3...
## 4 13007 Baker County, Georgia 31.25000 MULTIPOLYGON (((-84.64166 3...
## 5 13009 Baldwin County, Georgia 28.94936 MULTIPOLYGON (((-83.42674 3...
## 6 13011 Banks County, Georgia 32.19921 MULTIPOLYGON (((-83.66862 3...

To summarize, sf within R is powerful because:

1. We are not limited to how data arrive to us. If you ac-
quire data (from the web, a colleague, etc) as a shapefile, a
geopackage, a raster or other formats, they can all be im-
ported into R.

2. Once inside of R (and stored in sf data objects), we can
treat the datasets almost as if they were aspatial, rectangu-
lar datasets. That means we could use sub-setting, filtering,
recoding, merging, and aggregating without losing the spatial
information!

1.3.4.2 Exporting spatial data from R

While importing is often the primary challenge with spatial data and R, it is not
uncommon that you might modify or alter a spatial dataset and wish to save it
for future use, or to write it out to disk to share with a colleague.

Luckily the sf package has the same functionality to write an sf spatial object
to disk in a wide variety of formats including shapefiles (.shp) and geopackages
(.gpkg). Again, R uses the extension you specify in the filename to determine
the target format.

# Write the file mvc to disk as a shapefile format
st_write(mvc, 'GA_MVC/ga_mvc_v2.shp')

# Write the file mvc to disk as a geopackage format
st_write(mvc, 'GA_MVC/ga_mvc_v2.gpkg')
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After you write the two files, navigate on your computer to the
folder and look at what was written. In particular notice that the
.shp file is actually many files, but the .gpkg is a single file.

1.3.5 Basic visual inspection/plots

What if you want to see your spatial data? In base-R there is a powerful
function called plot() that can be used to create easy or incredibly complex
visualizations or graphical representation of data.

In the package sf, the functionality of plot() is extended to handle the unique-
ness of spatial data. That means that if you call plot() on a spatial object
without having loaded sf, the results will be different than if plot() called
after loading sf.

When you plot() with sf, by default it will try to make a map for every
variable in the data frame! Try it once. If this is not what you want (it
usually is not), you can force it to only plot some variables by providing a vector
of variable names.

plot(mvc) # this plots a panel for every column - or actually the first 10 columns
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GEOID NAME variable

estimate County MVCDEATHS_05

MVCDEATHS_14 MVCDEATH_17 TPOP_05

plot(mvc['MVCRATE_05']) # this plots only a single variable, the MVC mortality rate for 2005
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plot(mvc[c('MVCRATE_05', 'MVCRATE_17')]) # this plots two variables: MVC rate in 2005 & 2017
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MVCRATE_05 MVCRATE_17

Sometimes you want to know something about the spatial size, extent, or shape
of your data. To do this you can easily plot only the geometry of the spa-
tial object (e.g. not attributes). Here are two approaches to quickly plot the
geometry:

plot(st_geometry(mvc)) # st_geometry() returns the geom information to plot

plot(mvc$geom) # this is an alternative approach...directly plot the 'geom' column



44 CHAPTER 1. LOCATING SPATIAL EPIDEMIOLOGY

1.3.6 Working with CRS and projection

Maps are used to describe the geographical or spatial location of particular
objects as a representation of where those things are on planet Earth. Most
maps are printed on paper or screens. In other words, maps identify locations
from somewhere on planet earth and represent them on a flat or planar medium.

But the world does not have latitude or longitude lines painted on the ground,
and the earth is not flat! Instead the earth is nearly spherical (really it is a
geoid) and there is no universal reference for where to start measuring.

For these two reasons, all maps require at a minimum a coordinate reference
system (CRS) to define how the numbers in our coordinates relate to actual
places. In addition most maps are best interpreted after formally projecting the
data to account for the artifact induced by pretending earth is flat.

The most unambiguous way to describe a CRS and/or projection is by using
the EPSG code, which stands for European Petroleum Survey Group. This
consortium has standardized hundreds of projection definitions in a manner
adopted by several R packages including rgdal and sf.
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A given dataset already has a CRS (and possibly a projection). If CRS and
projection information was contained in the original file you imported, it will
usually be maintained when you use st_read(). However sometimes it is miss-
ing and you must first find it. Once it is known, you might choose to change
or transform the CRS or projection for a specific purpose. We will discuss this
further in class.

If there is NO CRS information imported it is critical that you
find out the CRS information from the data source or owner.

This course is not a GIS course (e.g. it is assumed you have already had some
exposure to geographic information systems generally), and learning about the
theory and application of coordinate reference systems and projections is not our
primary purpose this semester. However, some basic knowledge is necessary for
successfully working with spatial epidemiologic data. Here are several resources
you should peruse to learn more about CRS, projections, and EPSG codes:

• A useful overview/review of coordinate reference systems in R
• Robin Lovelace’s Geocompuation in R on projections with sf
• EPSG website: This link is to a searchable database of valid ESPG codes
• Here are some useful EPSG codes

Figure 1.1: Comparing CRS

The choice of CRS and/or projection has a substantial impact on how the ren-
dered map looks, as is evident in the figure above (source of image).

We already saw the CRS/projection information of the mvc object when we used
the head() function above; it was at the top and read WGS 84.

Recall there are two main types of CRS:

1. Geographic which is to say coordinate locations are represented as lati-
tude and longitude degrees;

https://www.nceas.ucsb.edu/sites/default/files/2020-04/OverviewCoordinateReferenceSystems.pdf
https://geocompr.robinlovelace.net/reproj-geo-data.html
https://epsg.io/
https://guides.library.duke.edu/r-geospatial/CRS
https://datacarpentry.org/organization-geospatial/03-crs.html
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2. Projected which means the coordinate values have been transformed for
representation of the spherical geoid onto a planar (Euclidean) coordinate
system.

WGS 84 is a ubiquitous geographic coordinate system common to boundary files
retrieved from the U.S. Census bureau.

An important question when you work with a spatial dataset is to understand
whether it is primarily a geographic or projected CRS, and if so which one.

st_is_longlat(mvc)

## [1] TRUE

This quick logical test returns TRUE or FALSE to answer the question “Is the sf
object simply a longitude/latitude geographic CRS?”. The answer in this case
is TRUE because WGS 84 is a geographic (longlat) coordinate system, and there
is no additional information about projection. But what if it were FALSE or we
wanted to know more about the CRS/projection?

# Retrieve CRS metadata from an sf object
st_crs(mvc)

## Coordinate Reference System:
## User input: WGS 84
## wkt:
## GEOGCRS["WGS 84",
## ENSEMBLE["World Geodetic System 1984 ensemble",
## MEMBER["World Geodetic System 1984 (Transit)"],
## MEMBER["World Geodetic System 1984 (G730)"],
## MEMBER["World Geodetic System 1984 (G873)"],
## MEMBER["World Geodetic System 1984 (G1150)"],
## MEMBER["World Geodetic System 1984 (G1674)"],
## MEMBER["World Geodetic System 1984 (G1762)"],
## MEMBER["World Geodetic System 1984 (G2139)"],
## ELLIPSOID["WGS 84",6378137,298.257223563,
## LENGTHUNIT["metre",1]],
## ENSEMBLEACCURACY[2.0]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433]],
## CS[ellipsoidal,2],
## AXIS["geodetic latitude (Lat)",north,
## ORDER[1],
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## ANGLEUNIT["degree",0.0174532925199433]],
## AXIS["geodetic longitude (Lon)",east,
## ORDER[2],
## ANGLEUNIT["degree",0.0174532925199433]],
## USAGE[
## SCOPE["Horizontal component of 3D system."],
## AREA["World."],
## BBOX[-90,-180,90,180]],
## ID["EPSG",4326]]

This somewhat complicated looking output is a summary of the CRS stored
with the spatial object. There are two things to note about this output:

• At the top, the User input is WGS 84
• At the bottom of the section labeled GEOGCRS it says ID["EPSG",4326"]

While there are literally hundreds of distinct EPSG codes describing different
geographic and projected coordinate systems, for this semester there are three
worth remembering:

• EPSG: 4326 is a common geographic (unprojected or long-lat) CRS
• EPSG: 3857 is also called WGS 84/Web Mercator, and is the dominant

projection used by Google Maps
• EPSG: 5070 is the code for a projected CRS called Albers Equal Area

which has the benefit of representing the visual area of maps in an equal
manner.

One rule of thumb to determine if data are in degrees of lat/long
(and thus geographic) versus in linear units such as meters or
miles (and thus projected) is to look at the xmin, ymin, xmax, and
ymax that are printed at the top of the output whenever you use
head(xxx).
Degrees of latitude (the y-axis values) will range from −90∘ to
+90∘, and degrees of longitude (the x-axis values) will range
from 0∘ to 180∘.
In contrast most projected data will have cartesian or linear units
(rather than degrees), usually with numbers much higher than
180.

Once the CRS/projection is clearly defined, you may choose to transform or
project the data to a different system. The sf package has another handy
function called st_transform() that takes in a spatial object (dataaset) with
one CRS and outputs that object transformed to a new CRS.
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# This uses the Albers equal area USA,
mvc.aea <- st_transform(mvc, 5070)

# This uses the Web Mercator CRS (EPSG 3857) which is just barely different from EPSG 4326
mvc.wm <- st_transform(mvc, 3857)

# Now let's look at them side-by-side
plot(st_geometry(mvc), main = 'EPSG 4326')
plot(st_geometry(mvc.wm), main = 'Web Mercator (3857)')
plot(st_geometry(mvc.aea), main = 'Albers Equal Area (5070)')

EPSG 4326 Web Mercator (3857) Albers Equal Area (5070)

Do you see some difference between the three? Although EPSG 4326 is unpro-
jected and EPSG 3857 is projected (e.g. Mercator is a conical projection), they
appear similar, although not identical.

Mercator projection is known to have increased distortion further from the
equator. In general we will prefer to use ‘projected’ rather than ‘unprojected’
(long/lat only) data for both visualization and analysis, and more specifically
we almost always prefer equal area projections for choropleth maps, because the
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coloring of the area being represented communicates something about intensity
of the measure.

Whenever you bring in a new dataset you will need to check the CRS and project
or transform it as needed.

Important: It is important to distinguish between defining the
current projection of data and the act of projecting or trans-
forming data from one known system to a new CRS/projection.
We cannot transform data until we correctly define its
current or original CRS/projection status. The above func-
tion tells us what the current status is. In some cases data do not
have associated CRS information and this might be completely
blank (for instance if you read in numerical 𝑥, 𝑦 points from a
geocoding or GPS process).
In those cases you can set the underlying CRS using
st_set_crs() to attach a user-known definition to the data ob-
ject, but this assumes you know what it is.
There are two arguments to this function: the first is x =
objectName, and the second is value = xxx where ‘xxx’ is a valid
EPSG code.
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Table 1.2: Vocabulary for Week 1

Term Definition

Data, attribute

Nonspatial information about a
geographic feature in a GIS,
usually stored in a table and
linked to the feature by a unique
identifier. For example,
attributes of a county might
include the population size,
density, and birth rate for the
resident population

Data, geometry

Spatial information about a
geogrpahic feature. This could
include the x, y coordinates for
points or for vertices of lines or
polygons, or the cell coordinates
for raster data

Datum

The reference specifications of a
measurement system, usually a
system of coordinate positions on
a surface (a horizontal datum) or
heights above or below a surface
(a vertical datum)

Geographic coordinate
system

A reference system that uses
latitude and longitude to define
the locations of points on the
surface of a sphere or spheroid.
A geographic coordinate system
definition includes a datum,
prime meridian, and angular unit

Geopackage

A data storage format suitable
for containing vector or raster
data in a compact and portable
file. It is an alternative (and in
my opinion a superior
alternative!) to ESRI shapefiles.

Projection

A method by which the curved
surface of the earth is portrayed
on a flat surface. This generally
requires a systematic
mathematical transformation of
the earth’s graticule of lines of
longitude and latitude onto a
plane. Some projections can be
visualized as a transparent globe
with a light bulb at its center
(though not all projections
emanate from the globe’s center)
casting lines of latitude and
longitude onto a sheet of paper.
Generally, the paper is either flat
and placed tangent to the globe
(a planar or azimuthal
projection) or formed into a cone
or cylinder and placed over the
globe (cylindrical and conical
projections). Every map
projection distorts distance, area,
shape, direction, or some
combination thereof

Spatial data model: raster

A spatial data model that defines
space as an array of equally sized
cells arranged in rows and
columns, and composed of single
or multiple bands. Each cell
contains an attribute value and
location coordinates. Unlike a
vector structure, which stores
coordinates explicitly, raster
coordinates are contained in the
ordering of the matrix. Groups of
cells that share the same value
represent the same type of
geographic feature (see Figure
below)

Spatial data model: vector

A coordinate-based data model
that represents geographic
features as points, lines, and
polygons. Each point feature is
represented as a single coordinate
pair, while line and polygon
features are represented as
ordered lists of vertices.
Attributes are associated with
each vector feature, as opposed
to a raster data model, which
associates attributes with grid
cells (see figure below)

Unit of analysis

The unit or object that is
measured, analyzed, and about
which you wish to make
inference. Examples of units of
analysis are person,
neighborhood, city, state, or
hospital.



Chapter 2

Cartography for
Epidemiology I

2.1 Getting Ready

2.1.1 Learning objectives

Table 2.1: Learning objectives by weekly module

After this module you should be able to…
Design a cartographic representation of epidemiologic data that is
consistent with best practices in public health data visualization.
Apply data processing functions to accomplish foundational data
management and preparation for spatial epidemiology (e.g. summarize,
aggregate, combine, recode, etc)

2.1.2 Additional Resources

• CDC Guidance for Cartography of Public Health Data (complements re-
quired reading)

• When Maps Lie
• Color Brewer Website for color guidance in choropleth maps
• Analyzing US Census Data: Methods, Maps, and Models in R
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https://www.cdc.gov/dhdsp/maps/gisx/resources/tips-creating-ph-maps.html
https://www.cdc.gov/dhdsp/maps/gisx/resources/tips-creating-ph-maps.html
https://www.citylab.com/design/2015/06/when-maps-lie/396761/
http://colorbrewer2.org/
https://walker-data.com/census-r/
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2.1.3 Important Vocabulary

2.2 Spatial Thinking in Epidemiology

Making pretty maps is not the full extent of spatial epidemiology. However,
epidemiologic cartography can sometimes be the beginning and end of spatial
epidemiology for a given purpose. And even when an epidemiologic analysis goes
well beyond mapping (perhaps to incorporate aspatial analysis, or to incorporate
more sophisticated spatial analysis), the ability to produce a clear, concise, and
interpretable map is an important skill.

As Robb, et al1 write:

Disease mapping can be used to provide visual cues about
disease etiology, particularly as it relates to environmental expo-
sures….Mapping where things are allows visualization of a baseline
pattern or spatial structure of disease, potential detection of
disease clusters, and the initial investigation of an exposure-disease
relationship.

There are aspects of cartography and map design that are general to most the-
matic maps of quantitative data. But there are some issues that seem especially
pertinent to us as epidemiologists or quantitative population health scientists.
These include the decisions we make about color choice and the process of cat-
egorizing numerical data for visual representation in a map.

Why are these especially important for epidemiology? A primary purpose of
a map is to visually represent something meaningful about the spatial or ge-
ographic variation in health or a health-relevant feature (e.g. an exposure or
resource). Communicating what is meaningful and representing variation that
matters is not solely a technical GIS task; it requires epidemiologic insight.

For instance our approach to representing ratio measures such as an odds ratio or
risk ratio should be different from how we represent risk or rate data, because
we understand that the scale and units are distinct in each case. Similarly,
we understand that characterizing variation or heterogeneity in a normal or
Gaussian (bell-shaped curve) distribution is different from a uniform or a highly
skewed distribution with a long right tail. This insight into how scales and values
are differently interpreted epidemiologically must be translated into sensible
choices in mapping.

1Robb SW, Bauer SE, Vena JE. Integration of Different Epidemiological Perspectives and
Applications to Spatial Epidemiology. Chapter 1 in Handbook of Spatial Epidemiology. 2016.
CRC Press, Boca Raton, FL.
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2.2.1 Color choices

For most thematic maps, color is the most flexible and important tool for com-
munication. Color, hue, and contrast can accentuate map elements or themes
and minimize others. The result is that you can completely change the story
your map tells with seemingly small changes to how you use color. This means
you should be clear and explicit about why you choose a given color or sequence
of colors, and beware of unintentionally misrepresenting your data by your color
choices.

In producing choropleth maps, we often talk about collections of colors as color
ramps or color palettes, because a single color by itself is not very interesting. A
quick scan of either the tmaptools::palette_explorer() utility, or the Color
Brewer website will demonstrate that there are many colors to choose from, so
is it just a matter of preference? Perhaps, but there are some guidelines to keep
in mind.

2.2.1.1 Sequential palettes

All color palettes use the color hue, value, or saturation to represent or symbolize
the values of the underlying statistical parameter of interest. When a parameter
or statistic is naturally ordered, sequential and monotonic, then it makes sense
to choose colors that range from light to dark. Conventionally lighter or more
neutral tones represent lower or smaller numbers and darker colors and more
intense tones represent higher or larger numbers. The dark colors jump out at
the viewer more readily, so occasionally the inverse is used to emphasize small
values, but this should be done with caution as it can be counter intuitive.

Figure 2.1: Sequential color palettes

Sequential palettes are useful for epidemiologic parameters such
as prevalence, risk, or rates, or continuous exposure values where
the emphasis is on distinguishing higher values from lower values.

http://colorbrewer2.org/
http://colorbrewer2.org/
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2.2.1.2 Diverging palettes

A less common choice, but one that is especially important for some epidemio-
logic parameters, is the diverging palette. In this pattern, the neutral color is
in the center of the sequence, with two different color hues become darker and
more intense as they go out from the center.

Figure 2.2: Diverging color palettes

You might choose this color sequence for one of two reasons:

1. You wish to show how units vary around the overall mean or median,
highlighting those that are larger than versus smaller than the overall
mean/median. For instance diverging palettes might emphasize areas with
particularly high burden of disease (and therefore in need of additional
attention), as well as those with unexpectedly low burden of disease (and
therefore worthy of understanding about protective factors).

2. You are mapping any epidemiologic measure of effect (e.g. ratio or differ-
ence measure) where there are values both above and below the null ratio
of 1.0 (for ratio) or 0 (for difference). For example if you map Standardized
Mortality/Morbidity Ratios, risk or odds ratios, or prevalence ratios, you
potentially have diverging data. The exception would be if all of the ratio
values were on the same side of the null (e.g. all were >> 1 or << 1).

In the map above, the SMR (a ratio of the county-specific prevalence of very
low birth weight infants to the overall statewide live birth prevalence) varies
from 0.13 to 2.30. In other words, a county with an SMR of 1.0 has the aver-
age prevalence of very low birthweight. This range of data is not sequential in
the same way as a risk or prevalence. Instead the neutral color is assigned to
counties in the range of 0.90 − 1.10, around the null. This is a way of indicating
these counties are average or typical. In contrast, counties with increasing ex-
cess morbidity have darker green, and substantially lower morbidity are darker
purple.
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Figure 2.3: Mapping ratio measure with divergent palette

2.2.1.3 Qualitative palettes

Qualitative refers to categories that are not naturally ordered or sequential. For
instance if counties were assigned values for the single leading cause of death in
the county, we might choose a qualitative palette, as a sequential or diverging
palette might mislead the viewer into thinking there is some natural ordering
to which causes should be more or less intense in their color.

2.2.2 Choropleth binning styles

A second topic relevant to the intersection of cartography and epidemiologic
thinking is the means by which we choose cut-points for visualizing data. In
other words for a map to visually represent some underlying statistical value,
we have to assign or map numerical values to colors. How you do that depends
greatly on the intended message or story your map needs to tell. Are you
interested in distinguish units that rank higher or lower in values? Or are you
primarily focused on finding extreme outliers, with variation in the ‘middle’ of
the distribution of less interest? These distinct purposes give rise to different
decisions about how to assign colors to numerical values in your data.

As discussed in the lecture, there are numerous methods or styles for categorizing
continuous data for choropleth mapping (e.g. identical data is summarized under
four different styles in figure above). Cynthia Brewer (of ColorBrewer fame)
and Linda Pickle (2002) sought to evaluate which styles are most effective for
communicating the spatial patterns of epidemiologic data.

https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3
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Figure 2.4: Comparing binning styles with same data

As cartographers, Brewer & Pickle were critical of the epidemiologists’ over-
reliance on quantile cut-points, given many other strategies that seemed to
have cartographic advantages. However, after randomizing map ‘readers’ to
interpret maps of the same underlying epidemiologic data using seven different
styles, they determined that readers could most accurately and reliably interpret
the disease patterns in maps using quantile cut-points. While there are benefits
of the other styles for some purposes, for the common use of communicating
which spatial areas rank higher or lower in terms of disease burden, quantiles
are most straightforward.

2.2.2.1 Mapping time series

It is common in spatial epidemiology that we want to map the spatial patterns of
disease for several different snapshots in time as a series to observe the evolution
of disease burden over time. But changing patterns over time raises additional
questions about how to make cuts to the data. There are several options for
determining the cut-points when you have a time series:

1. Pool all of the years data together before calculating the cut-points
(e.g. using quantiles). Use the pooled cut-points for all years.

2. Create custom year-specific cut-points that reflect the distribution of data
for each year separately.

3. Create cut-points based on a single year and apply them to all other years.

The map above of Georgia motor vehicle crash mortality data in three different
years (2005, 2014, 2017), was created in tmap using the tm_facet() option
where the the by = was year. As a result, the quantile cut-points represent
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Figure 2.5: Georgia MVC deaths by year with a common scale
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the breaks pooling all observations across the three years. In other words the
cut-points come from 159 counties times three years: 477 values.

By having a common legend that applies to all three maps, this strategy is useful
for comparing differences in absolute rates across years.

Figure 2.6: U.S. heart disease mortality with a year-specific scales

The map above of heart disease mortality rates by county in two years (1973-4;
2009-10) uses quantile breaks calculated separately for each time period. This
was done in part because the heart disease mortality rate declined so much
between these years that a scale that distinguished highs from lows on one map
would not distinguish anything on the other map. In this case what is being
compared is not the absolute rates but the relative ranking of counties in the
two years.
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2.3 Spatial Analysis in Epidemiology

Every spatial epidemiology project must include attention to data acquisition,
cleaning, integration, and visualization. The specific workflow is driven largely
by the overarching epidemiologic question, purpose, or goal. In this section we
use a specific question to illustrate key steps to data preparation for epidemio-
logic cartography.

Case Example Objective: Create a choropleth map visualizing
geographic variation in the all-cause mortality rate for U.S. counties
in 2016-2018. Compare this to a choropleth map of % uninsured in
U.S. counties.

This objective will be directly relevant for the lab this week as well as for
the Visualizing US Mortality, Visual Portfolio, an assignment due later in the
semester.

Although this specific question dictates specific data needs, these four types of
data are frequently needed to produce a map of a health outcome or state:

1. Numerator data, in this case representing the count of deaths per county
in the target year

2. Denominator data, in this case representing the population at risk for
death in each county in the target year

3. Contextual or covariate data, in this case the prevalence uninsured
for each U.S. county

4. Geographic (geometry) data representing the shapes and boundaries
of U.S. counties

2.3.1 Obtaining and preparing numerator data

The event of interest (e.g. the numerator in a risk, rate, or prevalence) can come
from many sources. If you are conducting primary data collection, it arises from
your study design and measurement. When using secondary data, it is common
to use surveillance data (e.g. vital records, notifiable diseases, registries, etc) or
administrative data as a source of health events.

When using secondary data sources owned or managed by another entity, one
challenge that can occur is suppression of data to protect privacy. For example
the National Center for Health Statistics mortality data available from CDC
WONDER suppresses the count of deaths, as well as the crude mortality rate,
whenever the numerator count is less than ten events. There can also be in-
stances when a local or state public health agency fails to report data to NCHS,
producing missing values.

https://wonder.cdc.gov/
https://wonder.cdc.gov/
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Depending on the data format, it is possible that either missing
or suppressed data could be inadvertently imported into R as
zero-count rather than missing. It is therefore critically important
to understand the data source and guidelines. The decision about
how to manage zero, missing, and suppressed data is an epidemi-
ologic choice, but one that must be addressed before creating a
map.

How to deal with data suppression. There are many reasons
your target data may fall below thresholds for suppression. Per-
haps the outcome event is quite rare, or you are stratifying by
multiple demographic factors, or perhaps you are counting at a
very small geographic unit. If suppression is problematic for map-
ping, consider pooling over multiple years, reducing demographic
stratification, or using larger geographic areas to increase event
count and reduce the number of suppressed cells.

For this example, we have downloaded all-cause mortality counts by county from
CDC WONDER for 2016-2018 (pooling over three years to reduce suppression).
In Lab we will discuss the procedure for acquiring data from the web. After
importing the data this is how it appears.

head(death)

## FIPS County Deaths Population crude
## 1 01001 Autauga County, AL 536 55601 964.0114
## 2 01003 Baldwin County, AL 2357 218022 1081.0836
## 3 01005 Barbour County, AL 312 24881 1253.9689
## 4 01007 Bibb County, AL 276 22400 1232.1429
## 5 01009 Blount County, AL 689 57840 1191.2172
## 6 01011 Bullock County, AL 112 10138 1104.7544

2.3.2 Obtaining and preparing denominator or contextual
data

The mortality data accessed from CDC included both numerator (count of
deaths) and denominator (population at risk). However there are instances
where you may have one dataset that provides the health event data (numera-
tor), but you need to link it to a population denominator in order to calculate
risk, rate, or prevalence.
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The U.S. Census Bureau maintains the most reliable population count data for
the U.S., and it is available in aggregates from Census Block Group, Census
Tract, Zip code tabulation area, City or Place, County, State, and Region.

Census data can be aggregated as total population or stratified by age, gen-
der, race/ethnicity, and many other variables. The census data also contains
measures of social, economic, and housing attributes which may be relevant to
measure context or exposures in spatial epidemiologic analyses. There are two
broad types of demographic and socioeconomic data released by the Census
Bureau.

• Decennial Census tables which (theoretically) count 100% of the popu-
lation every 10 years. These can be cross-classified by age, race/ethnicity,
sex, and householder status (e.g. whether head of house owns or rents and
how many people live in house)

• American Community Survey (ACS) tables which provide a much
larger number of measures but are based on samples rather than com-
plete counts. The ACS began in the early 2000’s and is a continually
sampled survey. Despite being collected every year, for many small areas
(e.g. census tracts or even counties) there are not enough responses in a
single year to make reliable estimates. Therefore ACS data pooled into
5-year moving-window datasets. For instance the 2015-2019 ACS reports
estimates for all responses collected during that time period, and these
are available from the Census Block Group up.

You may have accessed Census or ACS data directly from the Census Bureau
website for other classes or tasks in the past. In the interest of reproducibility
and efficiency, we introduce the tidycensus package in R. It is an excellent
tool for acquiring either Decennial Census or ACS data directly within R. The
advantage of doing so is twofold:

1. It can be quicker once you learn how to do it; 2, It makes your data
acquisition fully reproducible without any unrecorded steps happening in
web browsers. In other words you have actual code that details what you
downloaded and what you did to it (rather than un-documented steps of
clicking and downloading from a browser).

https://www.census.gov/programs-surveys/acs
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We will practice the code in the next few sections in lab. It is
included here as a primer. In these sections I walk through one
way to download and prepare data to quantify the county-level
prevalence of the population who are uninsured, as this might be a
covariate of interest when examining spatial variation in mortality.
I selected the code below because it is relatively efficient, although
you may find some of it complex or confusing. I include it for those
who would like to explore other data-manipulation functions in R.
Please note that you do not need to learn all of the functions in this
Census data acquisitions section below for this course, although
you might find these or related approaches useful. Note also that
there are many ways to accomplish anything in R, and you could
achieve the same ends with different strategies.

2.3.2.1 Setting up Census API

To access any Census products (e.g. attribute tables or geographic boundary
files) using the tidycensus package, you need to register yourself by declaring
your API key. If you haven’t already done so, go here to register for the key.

# Only do this if you haven't already done it; it should only need to be done once.

tidycensus::census_api_key('YourKeyHere', install = T)

2.3.2.2 Choosing Variables

By far the biggest challenge of requesting data from the Census Bureau is know-
ing what you want, and where it is stored. Census data are distributed as aggre-
gated counts contained in specific tables (each has a unique ID), and made up
of specific variables (also a unique ID composed of table ID plus a unique ID).
There are two ways to find variables:

• You could go to the Census website and browse around. For instance
the Census Data Explorer website is one way to browse the topics and
variables

• You could download all of the variables for a given year into R, and use
filters to search it.

This code queries the Census website (assuming you have internet connection)
and requests a list of all variables for the ACS 5-year pooled dataset (e.g. acs5)
and for the window of time ending in 2018 (e.g. 2014-2018). I also specify cache

https://api.census.gov/data/key_signup.html
https://data.census.gov/cedsci/
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= T which just means to save the results for quicker loading if I ask again in the
future.

library(tidycensus)

all_vars <- load_variables(year = 2018, dataset = 'acs5', cache = T)

head(all_vars)

It may be easiest to look at the dataset using the View() function. When you
do so, you see the three variables, and you have the option to click the Filter
button (upper left of View pane; looks like a funnel). The Filter option is one
way to search key words in either the label or concept column.

We are interested in capturing the prevalence of uninsured in each county. Try
this:

• Go to View mode of variables (e.g. View(all_vars))
• Click the Filter button
• Type insurance in the concept field
• Type B27001 in the name field

Figure 2.7: Screenshot of RStudio View() of ACS variables

What we want is a list of the specific tables and variable ID’s to extract from
the Census. In lab we will use some more detailed code to accomplish this goal.

You may have noticed that the full list of ACS variables has nearly 27,000
variables! In the code below I use some tricks to filter the huge list of all
variables to get only the names I want. It relies on the tidyverse package
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stringr which is great for manipulating character variables (this is great for
many data science tasks; read more about stringr here). In this case I am
using it to filter down to just the table I want (e.g. B27001), and then to get
the names of the variables that contain the string ‘No health insurance’.

a <- all_vars %>%
filter(stringr::str_detect(name, 'B27001')) %>% # this limits to rows for the B27001 table
filter(stringr::str_detect(label, 'No health insurance')) # this limits to rows with this text

myVars <- c('B27001_001', a$name)

Here is the list of variables we want to acquire; each one represents a count of
uninsured at each of multiple age groups. We will sum them up to get a total
population uninsured prevalence.

## [1] "B27001_001" "B27001_005" "B27001_008" "B27001_011" "B27001_014"
## [6] "B27001_017" "B27001_020" "B27001_023" "B27001_026" "B27001_029"
## [11] "B27001_033" "B27001_036" "B27001_039" "B27001_042" "B27001_045"
## [16] "B27001_048" "B27001_051" "B27001_054" "B27001_057"

2.3.2.3 Retrieving data from Census

To actually retrieve data from the Census we use the function get_acs() (or
if you were getting decennial data the function would be get_decennial()).
When you request data you must specify the geography (e.g. do you want counts
for states, counties, census tracts, census block groups?), the variables, the year,
and the dataset. Look at ?get_acs to read more about options.

The following code chunks use the dplyr and tidyverse verbs and the %>%
(pipe) to connect data steps together. This is complex at first, but it is worth
carefully examining how each step works. If you are not familiar with this
syntax, it would probably be helpful to review the Appendix section on dplyr.

# First, request the data from ACS
insure_tidy <- get_acs(geography = 'county',

variables = myVars,
year = 2018,
survey = 'acs5') %>%

select(-moe)

# Look at the resulting object
head(insure_tidy)

https://stringr.tidyverse.org/
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Looking at the first few rows of the data object insure_tidy
above, you might be surprised that there is a column labeled
variable, and the cells within that column are actually what
we thought were the variable names! That is because these data
are structured in a tidy format, which happens to be long not
wide. Read more about transposing data here. In the following
steps we will reshape this data to be more useful.

What this code does:

• define the geography = as county.
• Specify the vector (previously created and named myVars) of variables to

download
• Specify the year of interest. Note that 2018 references the 2014-2018 5-

year window
• specify the survey, which will most often be acs5

# Now I pull out the denominator
insure_denom <- insure_tidy %>%
filter(variable == 'B27001_001') %>%
rename(TOTPOP = estimate) %>%
select(-variable)

# Look at the resulting object
head(insure_denom)

## # A tibble: 6 x 3
## GEOID NAME TOTPOP
## <chr> <chr> <dbl>
## 1 01001 Autauga County, Alabama 54277
## 2 01003 Baldwin County, Alabama 205452
## 3 01005 Barbour County, Alabama 22882
## 4 01007 Bibb County, Alabama 20468
## 5 01009 Blount County, Alabama 57169
## 6 01011 Bullock County, Alabama 9978

The code above was necessary because most of the variables were age-specific
counts of the number of uninsured people. But one variable, B27001_001 is the
count of all included in the table. In other words, it is the denominator for
calculating the prevalence of uninsured. Therefore I did the following in the
code above:
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• filter() restricts to only the rows of data where the variable is the
denominator count (B27001_001). Filter is like where in SAS

• rename() is a way to rename variables to my own liking
• select() drops the variable called variable

# Now I sum up all the variables for the numerator
insure_num <- insure_tidy %>%
filter(variable != 'B27001_001') %>%
group_by(GEOID) %>%
summarise(no_insure = sum(estimate))

head(insure_num)

## # A tibble: 6 x 2
## GEOID no_insure
## <chr> <dbl>
## 1 01001 3875
## 2 01003 20864
## 3 01005 2558
## 4 01007 1619
## 5 01009 6303
## 6 01011 1076

The code above addresses an issue common to census tables: they may not be
constructed in the way you want them. As discussed above, in this case the
values are counts for each age group, but we only want a single count for the
entire population of each county. Therefore, it is necessary to sum across or
aggregate the counts over all age groups to get a single count (the numerator
number of uninsured) for each county.

The strategy used above was specific to the data being in long format, which
happens to be tidy data in this case. Read about changing between long and
wide here.

The code above achieves this through steps:

• filter() using the != mean “is not equal to”; this simply removes the
denominator variable, so that we are only summing over numerator counts

• group_by() is a very useful dplyr verb; it is similar to using class in
SAS, and tells R to do something separately for each group (e.g. each
GEOID or county in this case)

• summarise() is a verb that works hand-in-hand with group_by(). The
grouping declares which groups, but the summarise() tells what to do.
In this case we just want to count up all of those uninsured across all age
gruops.
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# Finally, merge the numerator and denominator in order to calculate prevalence
uninsured <- insure_denom %>%
left_join(insure_num, by = 'GEOID') %>%
mutate(uninsured = no_insure / TOTPOP) %>%
select(GEOID, uninsured)

# Take a look at the resulting object
head(uninsured)

## # A tibble: 6 x 2
## GEOID uninsured
## <chr> <dbl>
## 1 01001 0.0714
## 2 01003 0.102
## 3 01005 0.112
## 4 01007 0.0791
## 5 01009 0.110
## 6 01011 0.108

This was a simple merge, but it is worth mentioning a few of the steps:

• left_join() is one of a famiy of merging verbs. The left in left_join()
simply means start with the first table (the one on the left) and merge
with the second table. The implications are with whether all rows or only
rows in the left or the right (first or second) table are retained. In this
case the left of first table is insure_denom and the right or second table
is insure_num)

• mutate() calculates the uninsured prevalence
• select() excludes unnecessary variables

The code process above was complex. While it was specific to this
exact scenario, each scenario might require different steps. The
challenge for you, the new spatial analyst, is to think through in
your mind how the data looks at the beginning and how you want
it to look at the end. Then create a sequence of steps that pro-
gresses from beginning to end. It takes practice, but is worthwhile
for spatial epidemiology, but also for data science and processing
more generally.

2.3.3 Obtaining and preparing geographic data

The final type of data needed is the geographic or geometry data. Again, the
source for geometry data varies by the study specifics: you may need poly-



68 CHAPTER 2. CARTOGRAPHY FOR EPIDEMIOLOGY I

gons (e.g. political or administrative boundaries), lines (e.g. transportation net-
works), or points (e.g. hospitals, food stores, toxic waste sites, etc). On the
other hand you may need or have data that are in raster format, including
weather or air pollution surfaces. There are open-access versions of many types
of geographic data online.

For choropleth mapping, area units including administrative and political
boundaries are commonly used. In the U.S. context, the Census geographies
are frequently used, including blocks, block groups, tracts, zip-code tabulation
areas, counties, cities & places, metropolitan areas, tribal areas, states, and
regions. In this section I provide a brief introduction to downloading census
boundary files directly into R.

2.3.3.1 Obtain geometry data from tidycensus

The first option is a very minor modification to the code in the previous sec-
tion acquiring census count data. The get_acs() function has an argument
geometry = that is FALSE by default. However, if you change it to geometry
= TRUE, you will automatically retrieve the data as an sf object including a
geometry column!

insure_tidy <- get_acs(geography = 'county',
variables = myVars,
year = 2018,
geometry = TRUE, # added geometry = T
survey = 'acs5')

One other argument to get_acs() not demonstrated here is
shift_geo. It is FALSE by default, but if set to shift_geo =
TRUE, it will return boundaries that have been projected to Al-
bers Equal Area, and where the states of Hawaii and Alaska are
artificially shifted to fit on a thematic map of the U.S.

2.3.3.2 Obtain geometry data from tigris

The tidycensus package actually requests the geometry by depending on an-
other package called tigris (the Census geography files are called TIGER files).
If you are obtaining both attributes (e.g. population counts) and geometries at
the same time, the tidycensus package makes the most sense. However, some-
times you only need the geometry, perhaps because the other data come from
sources other than the Census Bureau.
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If you want to directly obtain areal boundary units, coastline data, road or
rail networks, voting districts, or other spatial data maintained by the Census
Bureau, consider using the tigris package. Try looking at the help documen-
tation (e.g. ?tigris, then click the Index link at the bottom to see all of the
options).

Here I demonstrate by retrieving the U.S. county boundaries:

library(tigris)
options(tigris_use_cache = TRUE)
us <- counties(cb = TRUE,

resolution = '5m',
year = 2018,
class = 'sf')

Here is what the code above does:

• The counties() function is one of dozens in tigris for downloading
specific kinds of boundary data

• cb = TRUE adjusts the level of detail or resolution of the boundaries. By
default cb = FALSE returns the most detailed data, which is quite large.
Setting cb = TRUE defaults to a generalized (1:500k scale) shape.

• resolution = '5m' is a further specification that I want an even more
generalized boundary file. The 1:5 million scale is more coarse in terms
of resolution of curves in county boundaries, but it is also a smaller file.
You must decide the balance between file size and resolution for a specific
need.

• year = 2018 specifies which vintage of boundary files. Tracts, counties,
cities, etc all change boundaries from year to year.

• class = 'sf' results in the object returned being a sf object, rather than
sp class data (the default).

summary(us)

## STATEFP COUNTYFP COUNTYNS AFFGEOID
## Length:3233 Length:3233 Length:3233 Length:3233
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## GEOID NAME LSAD ALAND
## Length:3233 Length:3233 Length:3233 Min. :8.209e+04
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## Class :character Class :character Class :character 1st Qu.:1.079e+09
## Mode :character Mode :character Mode :character Median :1.563e+09
## Mean :2.833e+09
## 3rd Qu.:2.367e+09
## Max. :3.770e+11
## AWATER geometry
## Min. :0.000e+00 MULTIPOLYGON :3233
## 1st Qu.:7.038e+06 epsg:4269 : 0
## Median :1.950e+07 +proj=long...: 0
## Mean :2.161e+08
## 3rd Qu.:6.159e+07
## Max. :2.599e+10

We can see from the summary that the data has a CRS/projection EPSG code
of 4269 (it is unprojected).

What does this boundary file look like?

plot(st_geometry(us))
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The Census boundaries include information for all U.S. counties and territories!
Therefore the map looks this way because Guam, American Samoa, Puerto
Rico, as well as Hawaii and Alaska are included. If you were only interested in
mapping the “lower 48” or contiguous states, you could exclude these. In the
code below, I also transform or project the data to Albers Equal Area using
EPSG code

us <- us %>%
filter(!(STATEFP %in% c('02', '15', '66', '60', '78', '72', '69'))) %>%
select(GEOID, STATEFP, COUNTYFP, NAME) %>%
st_transform(5070)

plot(st_geometry(us))

2.3.4 Merging Attributes and Geography

A final step in data preparation is bringing together the attribute data and the
geometry data, assuming it has not already been incorporated. Assuming the
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attributes are a data.frame (or perhaps a tibble, which is a tidyverse data
table object), and the geometry is a sf object (which also has class data.frame),
the merge is straightforward. Here is what is needed for merging or joining data:

• Unique key or ID variable in the attribute data that matches with the ID
in the geometry data

• Unique key or ID variable in the geometry data that matches with the ID
in the attribute data

• Matching ID’s does not require same variable name but does re-
quire same variable type.

If you are merging several datasets, and one of them is an sf object, put that
dataset first in the sequence, as that will insure that the final object remains of
class sf. If you cannot put the sf first, you may need to re-define the object as
sf at the end. See the Appendix on st_as_sf() for more detail.

us2 <- us %>%
left_join(death, by = c('GEOID' = 'FIPS')) %>%
left_join(uninsured, by = 'GEOID')

2.3.5 Mapping Mortality & Uninsured

library(tmap)

t1 <- tm_shape(us2) +
tm_fill('crude',

style = 'quantile',
palette = 'BuPu',
title = 'Rate per 100,000 py') +

tm_borders(alpha = 0.2) +
tm_credits('Source: CDC Wonder',

position = c('RIGHT', 'BOTTOM')) +
tm_layout(main.title = 'All-cause mortality rate, 2016-2018',

bg.color = 'grey85')

t2 <- tm_shape(us2) +
tm_fill('uninsured',

style = 'quantile',
palette = 'YlOrRd',
title = '% Uninsured',
legend.format = list(fun=function(x) paste0(formatC(x * 100,
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digits=1,
format="f"), "%"))) +

tm_borders(alpha = 0.2) +
tm_credits('Source: American Community Survey',

position = c('RIGHT', 'BOTTOM')) +
tm_layout(main.title = 'Uninsured Prevalence, 2014-2018',

bg.color = 'grey85')

tmap_arrange(t1, t2, ncol = 1)

All−cause mortality rate, 2016−2018

Source: CDC Wonder

Rate per 100,000 py
179 to 887
887 to 1,061
1,061 to 1,197
1,197 to 1,347
1,347 to 2,791
Missing

Uninsured Prevalence, 2014−2018

Source: American Community Survey

% Uninsured
1.7% to 5.7%
5.7% to 7.9%
7.9% to 10.4%
10.4% to 13.6%
13.6% to 42.4%
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Table 2.2: Vocabulary for Week 2

Term Definition

Cartography

The production of maps,
including construction of
projections, design, compilation,
drafting, and reproduction

Choropleth map

A type of thematic map in
which areas are shaded or
patterned in proportion to a
statistical variable that
represents an aggregate summary
of a geographic characteristic
within each area, such as
population density, disease risk,
or standardized mortality ratio

Color palette: diverging

Diverging schemes allow the
emphasis of a quantitative data
display that progresses outward
from a critical midpoint of the
data range. A typical diverging
scheme pairs sequential schemes
based on two different hues so
that they diverge from a shared
light color, for the critical
midpoint, toward dark colors of
different hues at each extreme

Color palette: qualitative

Qualitative schemes use
differences in hue to represent
nominal differences, or differences
in kind. The lightness of the hues
used for qualitative categories
should be similar but not equal. 

Color palette: sequential

Sequential data classes are
logically arranged from high to
low, and this stepped sequence of
categories should be represented
by sequential lightness steps.
Low data values are usually
represented by light colors and
high values represented by dark
colors. Transitions between hues
may be used in a sequential
scheme, but the light-to-dark
progression should dominate the
scheme.

Isopleth map

A type of thematic map that uses
contour lines or colors to indicate
areas with similar regional
aspects. It typically symbolizes
the underlying statistic as
varying continuously in space, in
contrast to the discrete
unit-specific variation of
choropleth maps

Standardize
Morbidity/Mortality Ratio
(SMR)

The ratio of observed to expected
disease morbidity or mortality.
Often the ’expected’ is defined as
the overall population (or
study-specific) rate; in that case
the SMR indicates the relative
deviation of a specific unit from
the global or overall rate

Visual hierarchy

The apparent order of
importance of phenomena
perceived by the human eye. In
cartography, this principle is a
fundamental part of map
composition; since the goal of
map composition is to clearly
convey a desired purpose, the
attention of readers should be
focused on the map elements that
are most relevant to the purpose.



Chapter 3

Cartography for
Epidemiology II: Spatial
Ethics

3.1 Learning objectives

3.2 Additional resources

• Report on confidentiality issues and policies related to geospatial data for
public health applicatins

3.3 Important Vocabulary

3.4 Spatial Thinking in Epidemiology, w3

“Progress in achieving health for all depends upon effectively collect-
ing, integrating, and utilizing medical, public health, socioeconomic,
environmental, and physical science data.”

“Although new technological advances can empower individuals and
neighborhoods seeking resources for better health care, they have
also heightened concerns about individual privacy and confidential-
ity.”
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http://www.ciesin.columbia.edu/pdf/SEDAC_ConfidentialityReport.pdf
http://www.ciesin.columbia.edu/pdf/SEDAC_ConfidentialityReport.pdf
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– Confidentiality Issues and Policies Related to the Uti-
lization and Dissemination of Geospatial Data for Public
Health Applications

Ethical concern for justice, beneficence, and respect for persons ground guide-
lines and practices in responsible conduct of public health research. When we
work with geospatial data these concerns are not lessened but instead often are
heightened, because of the power of locational information as a means for dis-
cerning private information and the risk for intended or unintended breaches of
confidentiality and even the transmission of stigma to groups by highlighting
health status in marginalized populations.

3.4.1 Risks of privacy breaches in collection of geospatial
information

Geographic identifiers below the scale of the state (e.g. county, city, census
tract, address) are considered Protected Health Information under HIPAA if
they are connected to individual health information. Surveillance and research
activities routinely collect geospatial information for contact or notification pur-
poses, or for reporting, although many consent forms do not explicitly explain
the intended purpose or use of the geospatial information.

While any individual should expect protection of privacy not only of individual
PHI such as date of birth or name, it is not always explicit that information such
as address can be uniquely identifiable and is linkable to other data. Privacy
is breached when app-based geocodes are captured without consent, or when
geospatial information is collected without express consent (e.g. if a research
respondent is asked to report the address for someone in their social network
without that persons consent).

While respect for personal autonomy dictates that individuals should be per-
mitted control of private information, there can also be risks beyond breach
of privacy. In some instances, disclosed geospatial information could result in
harms to the participant or others. For example collected address information
could inadvertently be released to someone seeking to commit violence (e.g as
in the case of intimate partner violence). Similarly, studies collecting geospatial
information can (and have) been requested by force of law to aid in the inves-
tigation or prosecution of suspected crimes. Thus the collection of geospatial
information must be well reasoned with respect to risk and benefit to the par-
ticipant, with appropriate notification and consenting process, and protections
in place to maintain confidentiality.

http://www.ciesin.columbia.edu/pdf/SEDAC_ConfidentialityReport.pdf
http://www.ciesin.columbia.edu/pdf/SEDAC_ConfidentialityReport.pdf
http://www.ciesin.columbia.edu/pdf/SEDAC_ConfidentialityReport.pdf
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3.4.2 Risk of confidentiality breaches through uninten-
tional de-identification

Once private geospatial data has been collected, there is a responsibility for data
owners (e.g. public health agencies, researchers) to protect the confidentiality of
that disclosed private information. Confidentiality protection refers to both the
secure control of confidential data as well as the avoidance of the unintended
re-identification of data deemed ‘de-identified’ through data linkages.

Maintaining data security is critical for all public health research and surveil-
lance activities, but sometimes geospatial data is ignored as a unique identifier.
In one instance I submitted a data request to a public health agency to obtain
surveillance data on abortion incidence. The data was delivered as an Excel
sheet where individual identifiers such as name and date of birth were removed,
but the field for address of residence was included. An address is an incred-
ibly powerful unique identifier, particularly when combined with other fields
including age or sex.

Geospatial data can be stored separately from other research attributes, main-
taining only a key for linkage in the instances when the spatial data are needed.
When they are not needed, there is less risk of accidental disclosure of these
fields.

Another risk that drives many public health agencies restrictive guidelines
around data suppression and reporting, is the concern for re-identification of
individuals from aggregated data because of small cell size and the ability
to discern identity from quasi-identifiers. For example, age, race, ethnicity,
or health outcome could each be quasi-identifiers in some instances when
cross-tabulation make individuals unique or nearly so.

In a study of the 1990 decennial census, researchers found that 87% of the U.S.
population could be uniquely identified with only three variables: exact date of
birth, zip code, and gender! This is due in part to the combined granularity
or specificity of two variables: date of birth and zip code. In most instances,
reporting health events at the zip code level without respect to age, or perhaps
with age categorized in coarse groups would eliminate the risk. But the take
home message is that the stratification of data we prefer for better scientific
understanding can quickly lead to at least some sub-groups being individually
or nearly individually identifiable.

3.4.3 Risk of stigmatization of place

A final ethical concern that is particularly relevant for disease mapping activ-
ities is concern for unintentional harm of persons or populations through the
stigmatization of place. This can happen when a map identifies locations where
marginalized populations spend time, and serves to either further stigmatize
that group, or stigmatize others unassociated with the group, but sharing the

https://dataprivacylab.org/projects/identifiability/paper1.pdf
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same location. Such stigmatization can lead to psychosocial harms, but also
can alter behavior by other institutional forces including social services, law
enforcement, and health services.

Examples of stigmatization of place include the identification of venues where
men who have sex with men seek partners, or the mapping of concentrations of
commercial sex workers or injection drug users. But the concern for stigmatiza-
tion of place has also been raised from the point of view of social epidemiology,
when predominantly Black and brown neighborhoods are repeatedly character-
ized as ‘unhealthy’. The potential harm perpetrated by these maps could arise
from the (presumably well-intended) desire to highlight unjust burdens, but the
failure to similarly highlight resilience in the face of burdens.

Relatedly, many spatial representations of economic and racial disparities fail
to name the factors that give rise to the inequities, including the role of socio-
historical and structural discrimination. By failing to name structural racism or
policies that serve to concentrate affluence separately from concentrated poverty,
the maps contribute to a narrative that the communities are in some way to
blame for their health outcomes.
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Table 3.1: Vocabulary for Week 3

Term Definition

Confidentiality

The duty of anyone entrusted
with health information to keep
that information private

Ethical principles:
beneficence

Two general rules have been
formulated as complementary
expressions of beneficent actions
in this sense: (1) do not harm
(e.g. non-maleficence)
and (2) maximize possible
benefits and minimize possible
harms

Ethical principles: justice

Ethical principle that the
burdens and benefits of research
and public health practice should
be justly distributed, including
attention to need, effort,
contribution, and merit

Ethical principles: respect
for persons

Defined by two ethical
convictions: a) individuals should
be treated as autonomous agents;
b) persons with diminished
autonomy are entitled to
protection

Geomask

A class of methods for changing
the geographic location of an
individual in an unpredictable
way to protect confidentiality,
while trying to preserve the
relationship between geocoded
locations and disease occurrence
(Sherman and Fetters 2007,
Wiggins 2002)

Privacy

The right of an individual to keep
his or her information (health
related or otherwise) private



80CHAPTER 3. CARTOGRAPHY FOR EPIDEMIOLOGY II: SPATIAL ETHICS



Chapter 4

Disease Mapping I:
Aspatial Empirical Bayes

4.1 Getting ready

4.1.1 Learning objectives

Table 4.1: Learning objectives by weekly module

After this module you should be able to…
Determine and defend appropriate disease mapping strategies consistent
with basic epidemiologic concepts (e.g. study design, sampling strategy,
measurement error, and systematic bias)
Create statistically smoothed, age-adjusted disease maps of epidemiologic
parameters including SMR, disease risk or rate, and measures of estimate
precision/stability
Describe the modifiable areal unit problem and discuss strategies for
evaluating bias arising from MAUP

4.1.2 Additional Resources

• Arianna Planey blog on spatial thinking and MAUP
• Waller L, Gotway C. Applied Spatial Statistics for Public Health Data.

Hoboken, NJ: John Wiley & Sons, Inc; 2004.
• Clayton D, Kaldor J. Empirical Bayes estimates of age-standardized rela-

tive risks for use in disease mapping. Biometrics. 1987 Sep;43(3):671–81.
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https://arriannaplaney.wordpress.com/2018/09/20/brief-notes-on-the-modifiable-areal-unit-problem-maup-in-spatial-analysis-the-case-of-the-zip-code/
http://emory-primoprod.hosted.exlibrisgroup.com/primo_library/libweb/action/display.do?tabs=detailsTab&ct=display&fn=search&doc=dedupmrg201721517&indx=1&recIds=dedupmrg201721517&recIdxs=0&elementId=0&renderMode=poppedOut&displayMode=full&frbrVersion=&frbg=&&dscnt=0&scp.scps=scope%3A%28repo%29%2Cscope%3A%2801EMORY_ALMA%29%2CEmory_PrimoThirdNode&tb=t&vid=discovere&mode=Basic&srt=rank&vl(274195192UI1)=all_items&tab=emory_catalog&dum=true&vl(freeText0)=waller%20spatial%20statistics&dstmp=1599068943521
http://emory-primoprod.hosted.exlibrisgroup.com/primo_library/libweb/action/display.do?tabs=detailsTab&ct=display&fn=search&doc=dedupmrg201721517&indx=1&recIds=dedupmrg201721517&recIdxs=0&elementId=0&renderMode=poppedOut&displayMode=full&frbrVersion=&frbg=&&dscnt=0&scp.scps=scope%3A%28repo%29%2Cscope%3A%2801EMORY_ALMA%29%2CEmory_PrimoThirdNode&tb=t&vid=discovere&mode=Basic&srt=rank&vl(274195192UI1)=all_items&tab=emory_catalog&dum=true&vl(freeText0)=waller%20spatial%20statistics&dstmp=1599068943521
https://www-jstor-org.proxy.library.emory.edu/stable/pdf/2532003.pdf
https://www-jstor-org.proxy.library.emory.edu/stable/pdf/2532003.pdf
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4.1.3 Important Vocabulary

4.2 Spatial Thinking in Epidemiology

Disease mapping is located at the intersection of statistics, geography, and epi-
demiology. Whereas the out-of-the-box GIS approach to making maps of health
statistics (e.g. what I’ve been referring to as epidemiologic cartography) takes
raw data and simply shows it on a map, disease mapping typically implies that
we are interested in going beyond just making pretty maps. Instead we are
driven by core epidemiologic questions and concerned about fundamental epi-
demiologic and statistical issues.

4.2.1 Why do we need disease mapping?

The defining driver or purpose of epidemiology is an interest in characteriz-
ing and estimating the distribution and determinants of health in populations.
Disease mapping is primarily focused on the former (distribution of health),
providing novel insight into the geographic patterns of health and disease. The
latter (determinants of health) can begin to be addressed by Modules 3 and 4
of this course focusing on Clustering and Spatial Regression.

To spatially describe the distribution of disease, epidemiologists are primarily
interested in two over-arching question:

1. Is the intensity of disease or health spatially heterogeneous or
spatially homogeneous?

2. Is there spatial structure or spatial correlation in the location of
disease intensity?

Spatial heterogeneity means there are differences in the intensity of disease in
some sub-regions as compared to others. Another way of saying it, is that the
local parameter (e.g. the rate, risk, prevalence, etc) in at least some sub-regions
of a study area is different from the global parameter (e.g. the overall rate, risk,
prevalence, etc) for the entire study area.

In contrast, spatial homogeneity means that if you know the overall, global
parameter, you basically know every local parameter, plus or minus random
variation. Looking for heterogeneity is the whole reason for mapping! If the
occurrence of disease were the same everywhere, a map would not tell us much!
In previous weeks we mapped disease, but our epidemiologic cartography efforts
to date fall short because we did not attend to the following three challenges:

1. Parameter estimate instability due to sparse data/rare events;
2. Spurious heterogeneity arising from ‘confounding’ by nuisance covariates;
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3. Biased description of spatial heterogeneity arising from the modifiable
areal unit problem (MAUP), a form of the ecologic fallacy

The following three sections provide additional detail about each of these chal-
lenges.

4.2.1.1 The problem and approach to data sparsity

Ideally we would like our maps to visualize values of our target parameter
(e.g. the risk, rate, prevalence, SMR, etc) that are accurate, reliable, and pre-
cise. In other words we don’t want a map that shows differences that are simply
the result of random error due to small populations or small number of events.

Therefore, reliable and precise estimation of epidemiologic parameters requires
sufficient data (e.g. sample size in each region mapped) to produce a summary.
When either a disease is quite rare – resulting in a small numerator – or the
population at risk is quite sparse – resulting in a small denominator – the
estimate of disease burden is inherently unstable or imprecise. That means that
adding just one or two more events or persons at risk has a notable impact on
the estimate.

As an example, imagine a county that has 10 people at risk of death in each
of three consecutive years (e.g. if some die, others are born or move into the
county). In one year, perhaps none die, in the next year one dies, and in the
third year three die. The mortality rate is estimated at 0%, 10% and 30%. We
would find it implausible that the actual risk of death is 0% in any location;
it would also be exceptional for the actual mortality risk to be 10%. In other
words each of these estimates are both mathematically true for the given year,
but statistically unstable, and frankly implausible as an indicator of the true
underlying risk of the population. The problem is the estimate of mortality rate
is derived from too little data.

In practice, public health agencies often suppress data when counts are small,
both out of concern for confidentiality, but also because the resulting estimates
are so unstable as to be potentially misleading. We have already discussed two
approaches to address data sparsity and the resulting parameter instability or
imprecision:

• Aggregate counts of disease events and population at risk over multiple
years or time intervals to increase the opportunity for events, or extend
the amount of person-time

• Aggregate counts of disease events and population at risk over geographic
units to pool together larger populations. For example data for mortality
may be too sparse at the census tract level but might be more stable after
pooling all tracts to their respective county level.
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We will spend the next several weeks exploring a range of methods that together
constitute a third option: statistical smoothing or stabilization. These tools use
the amount of information (as a function of sample size) to smooth extreme
highs and extreme lows in an effort to recover a plausible ‘true’ amount of
spatial heterogeneity. A critical goal of disease rate stabilization is that we do
not smooth any more than is necessary, so that true highs and lows persist, but
spurious or unstable values are adjusted.

This week we will use aspatial or global Empirical Bayes estimators as our first
approach to parameter stabilization. In future weeks we will explore spatial
Empirical Bayes, kernel density estimators, and fully Bayesian estimators as
additional strategies for producing maps that highlights the signal of spatial
heterogeneity net of the noise from random error.

4.2.1.2 The problem and approach to confounding or nuisance
sources of heterogeneity

Confounding in epidemiology refers to a specific causal structure, wherein the
association between a putative exposure and a target disease outcome is spuri-
ously associated because of a backdoor path through one or more confounders.

In disease mapping we do not have a formal ‘exposure’ (e.g. we do not directly
measure an aspect of the place, instead only estimating the aggregate outcome),
with place perhaps being a stand-in for unmeasured attributes that vary through
space. Therefore we probably should not call this confounding in the strictest
sense of the word.

Instead you can imagine that there are covariates that are simply a nuisance.
That means they explain some amount of spatial heterogeneity, but you as the
epidemiologist are not particularly interested in their role as an explanation.
Instead you wish to know if there is still spatial heterogeneity above and beyond
those covariates. For example consider comparison of mortality rates by state:

State
Crude mortality rate (per
100,000)

Age-adjusted mortality rate (per
100,000)

Florida 957.3 666.6
Alaska 605.7 745.6

Using the crude mortality rate, it is clear that Florida has a mortality rate
perhaps 30% higher than Alaska, suggesting something really awful is going
on in Florida as compared to Alaska! However once we adjust or standardize
by age, it is actually Alaska that has a slightly higher (age-adjusted) mortality
rate.

Both numbers are technically accurate, and depending on your purpose ei-
ther number could be useful. However, for many purposes where you wish to
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map mortality across states, you might think that differences in age-structure
(e.g. many more retirees in Florida than Alaska) is a nuisance to accomplishing
the goal; so for disease mapping an age-adjusted estimate might be more useful.

The strategies in spatial epidemiology for addressing ‘confounding’ (e.g. remov-
ing the effects of nuisance variables) is similar to those in non-spatial epidemi-
ology. Standardization, stratification, and regression control are conventional
tools.

In disease mapping it is quite common to use standardization as a tool to balance
or condition on one or more covariates, such as age. However there are methods
including the fully Bayesian models and later spatial regression models, where
it is possible to control for multiple covariates.

4.2.1.3 The problem and approach to MAUP

Another source of bias or error in disease mapping that we should be thinking
about could occur when we aggregate data of individual’s health outcomes to
areal units like census tracts, zip codes, counties, school districts, etc. This
“aggregation bias” is called the modifiable areal unit problem or MAUP,
and is a spatial version of the familiar ecologic fallacy.

When present, MAUP can produce misleading disease maps if the aggregate
risk, prevalence, or rate is not a good reflection of the experience of individuals
within that polygon.

There are two ways that the MAUP can occur:

1. Arbitrary zoning or boundaries to create aggregates. Often, the poly-
gons, shapes, or boundaries we use to aggregate health data are used
because they are convenient, rather than because they meaningfully cap-
ture something about the social or environmental spatial organization of
health events. The result is a mis-alignment between what is actually
happening and the way we count it up.

2. Arbitrary scale or level of aggregation. This occurs when we aggregate
to a level or scale that is different from the level or scale at which pop-
ulation health is generated. There is no single ‘right’ scale. It depends
on the process of interest. The ‘correct’ scale for understanding the effect
of Medicaid expansion under the ACA (e.g. probably states are a good
scale) is likely different from the ‘correct’ or best scale for understand-
ing the role of healthy commercial food retailers on obesity (e.g. probably
some city or neighborhood scale is most appropriate).

One key take away from the above discussion is that the bias from the MAUP
arises when the way we carry out an analysis that does not align with the
way that health outcomes are generated or produced. In other words, not
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all aggregation or zoning are similarly harmful (e.g. MAUP is not always a
problem)!

The work for the spatial epidemiologist is to consider how aligned (or mis-
aligned) the available aggregation is with respect to the hypothetical process
that generated spatial variation in health. Sometimes it is possible to explore
sensitivity of results to choice of scale or zoning but repeating analyses with
alternative boundaries or scales.

4.2.2 Using statistics and probability models to improve
disease mapping

In epidemiology, we spend a lot of time trying to disentangle ‘noise’ from ‘sig-
nal’ in collections of data and their relationships. This is evident in our focus on
two broad buckets of error: random error that comes from chance and is related
to sample size; and systematic error that comes from structural bias (e.g. con-
founding, selection, misclassification/measurement error) that is not driven by
sample size and is therefore not fixed or corrected by increasing sample size).

To make inference (make meaning or decisions) from data that take account of
random error we adopt statistical probability models that describe the role of
chance alone in generating values. For instance many statistics operate under
assumptions related to Gaussian or normal distributions. We also rely on Pois-
son and binomial distributions to evaluate variation and differences for count
and binary data respectively.

4.2.2.1 How are statistics different in space?

Spatial statistics is a huge field, well broader than what we will cover this week,
or this entire semester. However it is worth introducing a few key ideas to
motivate the statistics we will be using.

Health outcome events typically occur at the level of the individual, and in-
dividuals can be referenced with respect to their location in space. Consider,
for example a study region represented by the blue square in the image below.
There is a population distributed across the region composed of individuals each
occupying any particular 𝑥, 𝑦 location.

In this population defined by geographic bounds, there may be some individuals
experiencing a health event. We could observe all (or a subset) of individuals
and their corresponding point locations at a point in time. This observation
represents a specific realization of a spatial point process. In other words we can
imagine each individual having some random chance of experiencing the event,
and the set of events indexed by their location is one realization or version of
the random process and how it is evident in space.
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Figure 4.1: Spatial point process
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To describe or quantify what is observed we could describe the spatial disease
intensity of the event as a spatially continuous surface. In other words for every
location, the intensity is the amount of disease per unit-area (e.g. cases per
square kilometer). To calculate a single, global, measure of spatial intensity for
the figure above we divide events by area:
𝑒𝑣𝑒𝑛𝑡𝑠
𝐴𝑟𝑒𝑎 = 14

4𝑘𝑚2 = 3.5
𝑘𝑚2

In this simplistic case we assumed the population at risk was evenly distributed
across the study region. More realistically, we can normalize events to the
spatially-varying population at risk (e.g. difference density of people in city,
suburbs and rural) to quantify the spatial intensity of disease.

Figure 4.2: Approximating intensity with areal aggregates

Because we often do not have the exact 𝑥, 𝑦 location of every person at risk
and every health event, we cannot observe the full spatial point process and
thus cannot estimate the continuous spatial intensity surface. However, we can
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approximate the spatial intensity by aggregating health events and population
and summarizing the ratio (e.g. as risk, rate, prevalence) per areal unit. In the
figure above, each rectangle contains 𝑛 = 100 person-years at risk, producing
the following disease rates estimating the spatial intensity of disease:

Region 𝑒𝑣𝑒𝑛𝑡𝑠
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 Estimate

A 6
100 6%

B 2
100 2%

C 5
100 5%

D 10
100 10%

When we have data in this form (e.g. counts of events and counts of population),
we can use one of several parametric statistical probability distributions common
in epidemiology including Poisson, binomial, and negative binomial.

Why are probability distributions useful?
A probability distribution is a mathematical expression of what
we might expect to happen simply due to random chance; said
another way, a probability distribution describes our expectations
under a null hypothesis. We choose different probability distribu-
tions to suit different types of data such as continuous, binary, or
count.
Relating the count of disease events to a probability distribution
permits the calculation of standard errors or confidence intervals
expressing the precision or certainty in an estimate. Alternatively
we could calculate a p-value as a means to test evidence for con-
sistency with a null hypothesis.

Here is a brief summary of probability distributions common to disease mapping:

Distribution Paramaterization MLE and comments

Binomial 𝑌𝑖|𝑟𝑖 ∼ 𝐵𝑖𝑛(𝑁𝑖, 𝑟𝑖) ̂𝑟𝑖 = 𝑌𝑖
𝑁𝑖

Poisson 𝑌𝑖|𝜃𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖𝜃𝑖) 𝜃𝑖 = 𝑌𝑖
𝐸𝑖

Poisson-gamma
mixture (a.k.a
negative
binomial)

𝑌𝑖|𝜃𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖𝜃𝑖),
𝜃𝑖 ∼ 𝑔𝑎𝑚𝑚𝑎(𝛼, 𝛽)

Note the gamma distribution
explains how much the 𝜃𝑖 varies.
In Bayesian framework the
gamma is a prior for 𝜃. This
will come up in future weeks!

In the formulas above:
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• 𝑌𝑖 is the count of health events in the 𝑖𝑡ℎ areal unit
• 𝑁𝑖 is the count of population at risk in the 𝑖𝑡ℎ areal unit
• 𝑟𝑖 is the risk in the 𝑖𝑡ℎ areal unit (e.g. estimated by 𝑌𝑖/𝑁𝑖)
• 𝐸𝑖 is the expected count, which is calculated as 𝑁𝑖 ×𝑟, where 𝑟 is an overall

reference level of risk (note there is no subscript 𝑖; that means it is global
risk rather than risk local to region 𝑖. So expected simply means the burden
of disease in the 𝑖𝑡ℎ areal unit if they experienced the reference risk.

• 𝜃𝑖 is the relative risk in the 𝑖𝑡ℎ areal unit; this is essentially the relative
deviation of this region from the expected.

Don’t panic looking at these formulas. Here are some take away points:

• Poisson distribution is a classic distribution to use for evaluating counts
of events possibly offsetting by the time-at-risk or person-years. This
latter point about the “offset” is how we use Poisson distribution to model
disease rates.

– Poisson assumes that the mean of the distribution is the same as the
variance of the distribution.

– Poisson distribution only approximates the disease intensity rate well
for rare disease processes. Therefore Poisson is not a good choice if
the outcome is not rare.

• Binomial distribution is useful for characterizing disease occurrence for
non-rare or common disease processes.

• Poisson-gamma Mixture may be the most foreign. However, you may
have heard of the Negative Binomial distribution for count data? Poisson-
gamma mixture is essentially a negative binomial model. It is a probability
distribution like the Poisson, except without the expectation that the mean
is equal to the variance. In other words it is robust to what is called over-
dispersion, when the variation in the count is greater than expected under
the Poisson.

– Over-dispersion is quite common in spatial epidemiology because
there often are unobserved factors driving the occurrence of disease in
each area, and those unobserved differences produce event intensity
that is not strictly Poisson in nature. We will use Poisson-gamma for
this reason.

If you want to learn more about Poisson point processes or probability distribu-
tions for spatial epidemiology, I highly recommend Lance Waller’s text, Applied
Spatial Statistics for Public Health Data (Waller & Gotway, 2004). It is available
electronically via Woodruff Library.
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4.3 Spatial Analysis in Epidemiology

As an example dataset, for the next four weeks of disease mapping we will aim to
estimate the spatial heterogeneity at the county level of the occurrence of very
low birthweight (VLBW; weight at birth < 1500 grams) babies in 2018-2019.
These data were derived from the Georgia OASIS website.

This outcome is of public health importance because of the high morbidity and
mortality associated with being born so early or so small. However, with an
overall rate of VLBW of only 1.8%, it is a rare outcome, and there will likely be
sparse data for many rural counties.

All data

Very low birth weight (<1500 grams), 2018−2019, 

No suppression

% VLBW
0.0 to 1.2
1.2 to 1.6
1.6 to 2.0
2.0 to 2.5
2.5 to 5.5

Suppress sparse counts

Very low birth weight (<1500 grams), 2018−2019, 

suppressing counties with < 10 events

% VLBW
1.0 to 1.4
1.4 to 1.8
1.8 to 2.1
2.1 to 2.5
2.5 to 4.2
Missing

In the maps above, we can visualize the observed VLBW prevalence as well as
the prevalence restricted only to counties meeting the NCHS suppression rule
for natality records (e.g. suppress any cell or sub-population reporting count
< 10). In the map on the right 85 of the 159 counties of Georgia would have
suppressed data. This suggests that, even when we know the values (e.g. they
aren’t suppressed) we should be thinking about issues of imprecision or instabil-
ity in the estimates (and therefore in the map overall) because so many counties
have such sparse data.

https://oasis.state.ga.us/
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There are four disease mapping objectives we wish to accom-
plish to more fully describe these data:

1. Test whether there is statistical evidence for spatial hetero-
geneity versus homogeneity

2. Describe the precision of VLBW prevalence estimates in
each county

3. Account for possibly spurious or nuisance differences be-
tween counties due to a confounding covariate such as ma-
ternal age structure

4. Produce overall and covariate-adjusted smoothed or stabi-
lized rate estimates using global Empirical Bayes.

4.3.1 Disease mapping: Is there spatial heterogeneity?

4.3.1.1 Calculating expected counts and the SMR

Up until now we have primarily represented disease burden using risks, rates, or
prevalence. However, as we introduce statistical estimation under Poisson and
Poisson-gamma (negative binomial), we are often testing whether the disease
intensity (risk, rate, prevalence) for any given geographic area deviates from
the expected value, where the expected value might be considered the average
risk/rate/prevalence for the entire study region. A natural way to represent this
deviation is by using Standardized Morbidity Ratios (SMRs):

𝑆𝑀𝑅𝑖 = 𝑌𝑖
𝐸𝑖

The standardized morbidity ratio (could also be standardized mortality, in-
cidence, or prevalence depending on what is being counted) is a measure of
relative excess risk. It quantifies the deviation of a population parameter (in
this case the live birth prevalence of very low birthweight for a geographically-
defined population) from a reference value (in this case the VLBW risk for the
whole state of Georgia). The SMR is calculated as the Observed count of events,
𝑌𝑖, divided by the Expected count, 𝐸𝑖, of events.

Calculating expected counts of VLBW events in these data is straightforward:
first calculate the overall risk for the entire study region, 𝑟, and then multiply
that by the population at risk in each county, 𝑁𝑖, to get the events expected if
there were homogeneity in risk, or if the 𝑆𝑀𝑅 = 1.0 for all counties.

# the overall (statewide) ratio of events to population is the global risk
risk <- sum(vlbw$VLBW) / sum(vlbw$TOT)
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# Now add a variable to the dataset representing expected count and SMR
vlbw <- vlbw %>%
mutate(expect = risk * TOT, # calculate the EXPECTED count for each county

SMR = VLBW / expect) # calculate the SMR as observed/expected

As you can see in the maps below, the SMR represents the same underlying
pattern, but simply does so on a different scale, that of relative excess risk
rather than absolute risk.

Risk of VLBW in Georgia

% VLBW
0.0 to 1.2
1.2 to 1.6
1.6 to 2.0
2.0 to 2.5
2.5 to 5.5

SMR of VLBW in Georgia
Std. Morbidity Ratio

0.13 to 0.67
0.67 to 0.90
0.90 to 1.10
1.10 to 1.40
1.40 to 2.30
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Spatial heterogeneity
Both maps above illustrate (qualitatively at least) that there is
spatial heterogeneity or variation in VLBW prevalence. The
absolute scale lets us see how the absolute burden varies in one
part of the state compared to another. But the relative scale of
the SMR specifically highlights counties as one of three types:

1. Better than average which means they have lower risk
than the average, statewide population. These have SMR <
1.0.

2. Worse than average which means they have higher risk
than the average, statewide population. These have SMR >
1.0.

3. About average meaning they have risk about as would be
expected given the statewide prevalence. These have SMR
approximately equal to 1.0.

4.3.1.2 Testing for spatial heterogeneity

Perhaps the fundamental purpose of disease mapping is to describe and represent
the magnitude and patterns of spatial heterogeneity or variation in health across
sub-areas of a study region.

But what if there isn’t any real variation!? For instance consider each of these
scenarios:

• The numerical values in the disease intensity being mapped are practically
the same for all regions, but we use arbitrarily narrow cutpoints to make
the regions look different cartographically.

• There appears to be large differences in values between sub-areas, but
the counts are so sparse that it is possible all of the seeming difference is
simply due to chance

For these reasons it is sensible to start by evaluating the evidence for any versus
no heterogeneity. If none, there is little reason to proceed with spatial analysis!
Luckily there are standard statistical tests designed just for this purpose: to
evaluate whether the count of events is significantly different across observations,
accounting for the number of trials or persons at risk.

The R package DCluster has a function for a chi-square test optimized for
the needs of aggregated data in spatial epidemiology. The test is called
achisq.test() and it can evaluate variation in numerator and denominator
under a Poisson or Negative Binomial (recall this is same as Poisson-gamma)
distribution.
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The sf data object containing the VLBW information is called vlbw; within
that sf object is a column named VLBW representing the count of babies born
very low birthweight in the county, and another variable named TOT representing
the count of all live births; this is the denominator population. In the language
of Poisson, 𝑌𝑖 is the count variable VLBW for each county, and we evaluate that
count against the offset which is the log of the number of births at risk.

Look at the help documentation for this function; here I specify the statisti-
cal model as Poisson. The argument R=499 refers to the number of random
permutations to use in calculating an empirical p-value.

DCluster::achisq.test(VLBW ~ offset(log(TOT)),
data = vlbw,
model = 'poisson',
R = 499)

## Chi-square test for overdispersion
##
## Type of boots.: parametric
## Model used when sampling: Poisson
## Number of simulations: 499
## Statistic: 416.6378
## p-value : 0.002

The null hypothesis is that the relative risk or SMR is equal to one for all coun-
ties. In other words, under the null, there is no significant difference in the
risk between counties. Based on 499 simulated permutations under the null,
the observed data appear quite inconsistent with the null assumption, as
evidenced by p.value = 0.002. In other words under a strictly Poisson proba-
bility model, there appears to be significant spatial heterogeneity in the risk of
VLBW.
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What does R = 499 mean?
In conventional statistics we often have closed form formulas for
calculating standard errors, confidence intervals or p-values. How-
ever, in spatial statistics the simple parametric assumptions do
not always hold. One empirical alternative to the closed-form for-
mula is to use random permutations of the data to simulate
the random data under the null hypothesis.
In the case of the achisq.test(), the null hypothesis is that the
observed count is equal to the expected count. Random permu-
tations of this would be to take a random Poisson draw for the
count in each county under the null. If we repeat that hundreds
of times (specifically 499 times in code above), we have a distri-
bution of what kind of patterns we might expect simply due to
random chance alone.
Then we compare our actual observed values to that distribution
of what a truly random distribution looks like. If the observed
values are very different from the set of random values, we might
say there is evidence against the null. In other words, our observed
data are very unlikely to have occured due to random chance alone.

What would happen if we allowed that the distribution under the null was
Negative Binomial (e.g. Poisson-Gamma) rather than strictly Poisson? We
could specify that and re-calculate the p-value testing for evidence of significant
heterogeneity:

DCluster::achisq.test(VLBW~offset(log(TOT)),
data = vlbw,
model = 'negbin',
R = 499)

## Chi-square test for overdispersion
##
## Type of boots.: parametric
## Model used when sampling: Negative Binomial
## Number of simulations: 499
## Statistic: 416.6378
## p-value : 0.84

This assumption seems to give us an entirely different picture of what is go-
ing on! While this will not always occur (e.g. in many instances a test for
heterogeneity under either Poisson or Negative Binomial will result in consis-
tent determination of statistical significance), it is also not a complete surprise.
There are two points worth making about the comparison of these two results.
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First, to understand how this is possible it might help to visualize the prob-
ability distributions themselves to fix in our minds what ‘over-dispersion’ or
‘extra-Poisson variance’ mean. Here is a plot of 10,000 draws from two random
distributions, the Poisson and the Negative Binomial. In each, the mean expec-
tation under the null is that there are 10 events, indicated by the blue dotted
line.
The left panel is the histogram of how many events occurred (assuming an
expected mean of 𝑛 = 10) with the Negative Binomial, and the right panel
shows the distribution under random draws from the Poisson.
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The Negative Binomial distribution is fatter, especially in the right-tail. This
means that even if the null/expectation of 𝑛 = 10 were true, we would expect a
wider range of counts (including more instances of high counts) by chance alone
under the Negative Binomial as compared with the Poisson.
A second point worth making is that this early step – testing for aspatial het-
erogeneity – is just that: a first look. There are many reasons for data to behave
with variance in excess of the Poisson expectation. Over-dispersion can arise
when there are important missing variables which predict the outcome event
and vary spatially. This is quite common.
If there were no evidence of spatial heterogeneity under either distribution, we
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might consider throwing in the towel now. However, given evidence of unusual
behavior under a Poisson expectation suggests further exploration might be
worthwhile. However, clearly we should consider using the Poisson-Gamma ap-
proach for subsequent analyses including Empirical Bayesian smoothing, below.

4.3.2 Disease mapping: How precise are county estimates?

Following the question of whether or not there is global spatial heterogeneity
(e.g. at least some counties have 𝑆𝑀𝑅 ≠ 1.0), a natural follow up question
would be how confident or precise are the estimates themselves, and which
counties are statistically significantly different from the null expectation?

A function to estimate the continuous p-value associated with the SMR is the
probmap function from the package spdep. This function calculates the proba-
bilities (under the Poisson probability model) of observing an event count more
extreme than what was actually observed, given the expected count (e.g. we
might expect every county had the overall risk). The test is a one-tailed test,
and by default the alternative hypothesis is that observed are less than expected,
or that SMR <1.0 (to test for extremes greater than 1.0, set the argument
alternative = 'greater').

In frequentist statistics we are more familiar with focusing on
small p-values as evidence to reject the null hypothesis. In the
case of the continuous p-value returned by probmap, we can think
about probabilities on either side of the spectrum.
For instance, with the default alternative = 'less', a proba-
bility that is 𝑝 < 0.05 would indicate an 𝑆𝑀𝑅 < 1 was statisti-
cally significant (at 𝛼 = 0.05). In contrast, 𝑝 > 0.95 would suggest
an unusual finding, under the null, for 𝑆𝑀𝑅 > 1. The 𝑝 > 0.95
for the alternative = 'less' would therefore be equivalence to
the 𝑝 < 0.05 for the alternative = 'greater' for describing
significance with 𝑆𝑀𝑅 > 1.

probmap expects several arguments including a vector of the count of cases,
a vector of the population at risk, and optionally a row.names vector to help
align observations. Because your objective is to identify counties with SMR in
excess of expected (e.g. »1), it is easier to interpret if we change the alternative
hypothesis of the one-sided test to be alternative = 'greater'.

The function returns the expected count of VLBW births (yet another way to
get this number!), as well as the SMR (in this case it is named relRisk, and
somewhat oddly the function multiplies the SMR by 100 so the numbers ap-
pear different!), and the Poisson probability that the observed count was more
‘extreme’ than actually observed.
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library(spdep)
x <- probmap(n = vlbw$VLBW, x = vlbw$TOT,

row.names = vlbw$GEOID,
alternative = 'greater')

head(x) # look at what is returned

## raw expCount relRisk pmap
## 13121 0.01885984 424.339856 103.69047 0.22974886
## 13029 0.01214953 19.461794 66.79754 0.95041991
## 13135 0.01791989 414.117867 98.52267 0.62470508
## 13127 0.02416255 33.121426 132.84452 0.04028446
## 13271 0.01204819 4.528959 66.24038 0.82965314
## 13279 0.01364256 13.332238 75.00616 0.85502966

As you can see, the function calculates:

• Raw rate, which is simply 𝑌𝑖
𝑁𝑖

• Expected count, which is simply 𝑟 × 𝑁𝑖, where 𝑟 is the overall expected
rate based on all VLBW and births in the Georgia dataset

• Relative risk, which is the SMR and is the ratio of the observed to expected.
Note that the function multiplies the SMR by 100. So the value 103
actually refers to an SMR of 1.03

• p-value, which again is the probability that the SMR in this county was
significantly greater than 1.0

For mapping, we will grab the SMR (e.g. relRisk but divided by 100 to make
it more conventional) and the p-value term, pmap, which we can easily add to
our sf object:

vlbw$pmap <- x$pmap

vlbw$SMR <- x$relRisk / 100

4.3.2.1 Mapping the p-value for the SMR

To produce a p-value map depicting the continuous probability that we would
observe an SMR that is more extreme than observed (and specifically in this
case, greater than observed), assuming the null described by the expected count
is true, we could use the probability retrieved from the previous code in a map,
next to the map of the SMR itself:
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smr_map <- tm_shape(vlbw) +
tm_fill('SMR',

style = 'fixed',
palette = '-RdYlBu',
breaks = c(0.13, 0.67, 0.9, 1.1, 1.4, 2.3),
title = 'Std. Morbidity Ratio') +

tm_borders() +
tm_layout(main.title = 'VLBW in Georgia, 2018-2019',

inner.margins = c(0.02, 0.02,0.05,0.2))+
tm_shape(ga) +
tm_borders(lwd = 2, col = 'black')

prob <- tm_shape(vlbw) +
tm_fill('pmap',

style = 'cont',
palette = 'PiYG',
n=7,
title = 'Prob SMR > 1\nby chance alone') +

tm_borders() +
tm_layout(main.title = 'Probability Map',

inner.margins = c(0.02, 0.02,0.05,0.2))+
tm_shape(ga) +
tm_borders(lwd = 2, col = 'black')

tmap_arrange(smr_map, prob)



4.3. SPATIAL ANALYSIS IN EPIDEMIOLOGY 101

VLBW in Georgia, 2018−2019
Std. Morbidity Ratio

0.13 to 0.67
0.67 to 0.90
0.90 to 1.10
1.10 to 1.40
1.40 to 2.30

Probability Map

Prob SMR > 1
by chance alone

0.2
0.4
0.6
0.8
1.0

While this is interesting, perhaps what is more useful would be to quantify these
probabilities into familiar thresholds. For example we could use the output of
the probmap() function to calculate custom p-value categories.

pv <- vlbw %>%
mutate(pmap.pv = ifelse(SMR > 1 & pmap < 0.05, 1, 0)) %>%
group_by(pmap.pv) %>%
summarise() %>%
filter(pmap.pv == 1)

The preceding code was designed to make a new spatial object (e.g. we create
object pv from the original county object vlbw) whose only purpose is to repre-
sent county boundaries or shapes of all counties where the SMR was statistically
significantly greater than 1. We will use this new object as an additional layer
on a map to outline or highlight the statistically significant counties. Here are
some notes about what the code does:

• REMEMBER: probmap carried out a 1-sided test, but to make this align
with results from the confidence intervals where we identified counties with
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extreme values in either direction, which were implicitly two-sided, we will
look for counties with p > 0.975. Thus the mutated variable pmap.pv is
equal to 1 when the county has both an SMR>1 and a pmap value less
than 0.05. Otherwise pmap.pv will be equal to zero.

• By using group_by(pmap.pv) along with summarise(), we first separate
counties into significant or not (remember pmap.pv is a binary 1/0), and
then merge or dissolves any adjacent counties that are of the same category
(e.g. significant or not significant). The result will be a spatial object with
general borders around sets of significant counties rather than around each
county separately.

• Finally, by using filter(pmap.pv == 1) this code removes the counties
that are not significant. The result is an object with only boundaries for
counties that are statistically significantly higher risk than expected. We
can then plot this object on the map.

tm_shape(vlbw) +
tm_fill('SMR',

style = 'fixed',
palette = '-RdYlBu',
breaks = c(0.13, 0.67, 0.9, 1.1, 1.4, 2.3),
title = 'Std. Morbidity Ratio') +

tm_borders() +
tm_layout(main.title = 'SMR of VLBW, GA 2018-2019',

inner.margins = c(0.1, 0.02,0.05,0.2)) +
# Add dark borders for significant
tm_shape(pv) +
tm_borders(lwd = 2, col = 'black') +
#tm_shape(ga) +
tm_borders(lwd = 1.5, col = 'black') +
tm_credits('Counties with higher than expected risk (p<0.05) highlighted with dark borders')+
tm_shape(ga) +
tm_borders(lwd = 1, col = 'black')
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SMR of VLBW, GA 2018−2019

Counties with higher than expected risk (p<0.05) highlighted with dark borders

Std. Morbidity Ratio
0.13 to 0.67
0.67 to 0.90
0.90 to 1.10
1.10 to 1.40
1.40 to 2.30

4.3.3 Disease mapping: Adjusting for covariates

While the SMR is straightforward for an overall, marginal total, it is also pos-
sible to calculate an SMR which adjusts for a covariate, such as maternal age,
by using indirect standardization. This means that you apply the reference rate
within each strata (e.g. of age in this case) to the population-at-risk within each
county-age strata.
You may recall from earlier classes (perhaps EPI 530) that you learned about
direct and indirect age-standardization (if you are not familiar with direct and
indirect standardization, it will be helpful to review old Epi Methods course
notes as a refresher!).
While standardization may not have been mentioned much since then, it is a tool
to adjust for confounding, just as you might with stratification of 2 × 2 tables,
or multivariable regression. It is not the only way to adjust for individual-level
covariates in spatial analysis, but it is a common approach when there is only
1 or perhaps 2 categorical covariates.
Calculating the expected count with indirect standardization for a categorical
variable (e.g. maternal age) requires that the data be arranged so that there is a
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row of data within each county representing the count of deaths for each of the
age-strata. While you could hand-calculate the standardized expected counts,
there is a convenience function for calculating expected counts using covariate
strata that you may find easier.

The convenience function is part of the SpatialEpi package. The expected()
function expects 3 arguments:

1. A vector of the count of the population at risk, including a row for every
covariate strata within every region;

2. A vector of the count of the number of events or cases (again separately
for each strata of covariate and region);

3. The number of strata within each region (e.g. how many age or covariate
categories are possible within a county?)

To age-adjust the vlbw data, we need a different object including counts not
only for each county, but each age-category within county. Luckily we can
retrieve that from Georgia OASIS. The object age has the same structure as
vlbw except that instead of 159 rows for 159 counties it has 1431 rows for 159×9
age categories. Said another way, these data are long.

## GEOID NAME AGECAT VLBW TOT
## 1 13001 Appling 10 - 14 0 1
## 2 13001 Appling 15 - 17 2 12
## 3 13001 Appling 18 - 19 0 30
## 4 13001 Appling 20 - 24 4 149
## 5 13001 Appling 25 - 29 4 141
## 6 13001 Appling 30 - 34 0 72

The expected() function will take the covariate-stratified counts, and calculate
a single expected count for each region (e.g. “how many VLBW births would we
expect if the maternal age structure of the mothers in county 𝑥 was the same
as the statewide maternal age structure?”). This can be used to produce age-
adjusted SMR’s. Notice how the output of the following function is in the vlbw
object, which has N=159 rows of data, despite the inputs (e.g. the information
to the right of the assignment arrow) being from the age object, which has 1431
rows.

library(SpatialEpi)
# First, must insure that data are sorted by county and covariate category
age <- age %>%
arrange(GEOID, AGECAT)

# Calculate the age-adjusted expected counts
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vlbw$expected_indirect <- SpatialEpi::expected(population = age$TOT,
cases = age$VLBW,
n.strata = 9)

# Remember, if you added 0.5 to observed above, do so here as well!

vlbw$SMR_adj <- vlbw$VLBW / vlbw$expected_indirect

We might wonder whether age-adjustment had any impact. As you can see from
the plot below, showing the unadjusted SMR versus the age-adjusted, in this
case indirect adjustment by age has created some extreme outliers. That may
be a result of stratifying already-sparse events into even smaller cells, producing
instability in estimates. We will revisit this below with global Empirical Bayes
smoothing and rate stabilization.
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4.3.4 Disease mapping: Rate stabilization with global Em-
pirical Bayes

Everything covered above has focused on representing the precision/stability/certainty
of the SMR of the observed data, possibly adjusted for covariates. However,
in the case of VLBW (and many other small-area mapping projects), you may
want to try to extract the signal or underlying spatial trend in the data, net of
the random noise induced by small event counts and widely varying population
sizes. This process is sometimes referred to as small area estimation because it
goes beyond just showing the observed values, instead trying to estimate some
underlying true trend.

Empirical Bayes (EB) estimation is one technique for producing more robust
small area parameter estimates. EB estimation is an approach to parameter
shrinkage, wherein extreme estimates (e.g. of SMR) are judged to be reliable or
not-reliable based on their variance, which itself is a function of the number of
events. In other words if a county has both an extreme SMR, and a small event
count, that SMR parameter is less reliable. In the absence of other information,
we might guess that it is extreme because of the small event count and try to
adjust, or shrink, it back into the range of reasonable values.

On the other hand if a county had a relatively extreme SMR, but had many
events, that extreme value might be deemed more reliable. As a result, it would
be shrunk less. EB estimation does just this: it uses the overall average rate (or
SMR) as the global reference and shrinks, or adjusts, each SMR towards that
global mean, inversely proportionate to variance. The ideal result is that true
patterns persist, while noise is eliminated.

DISCLAIMER: You do not need to understand Bayesian sta-
tistical theory to work effectively with these EB estimators in this
class. However I provide superficial discussion of what is happen-
ing below for those who want it. If you are less interested, focus
on the code for producing the estimates and the credible inter-
vals. If you are really interested, likely my superficial intro will
be unsatisfying. I can point you to more resources if desired!

4.3.4.1 A bit about Bayes…

You may have learned Bayes Theorem in statistics, but may not have gone
much further than that. Bayesian statistics take a slightly different perspective
to analysis and inference as compared to the frequentist statistics underlying
most of what we conventionally use.

Bayes theorem has a familiar likelihood component, which is essentially what
we estimate from observed data. The likelihood is the piece on which inference
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Figure 4.3: Bayes Theorem

is based for frequentists. But for Bayesians, the theorem posits that there is
some prior belief that when combined with the likelihood provides a new and
updated posterior belief.
While in fully Bayesian analysis, the prior is actually a probability distribution
of its own, with Empirical Bayes, the prior is derived from some observed data.
Often the prior expectation is the overall rate (either globally as it is today,
or locally as it will be next week). Therefore, when we combine our prior
expectation with the observed data, we can produce a statement about our
updated belief in how large or small the SMR is. Because the posterior is
typically not just a single number, but a fully distribution, we can also say
something about precision or certainty of the estimate for each area.

4.3.4.2 Poisson-Gamma mixture model

Recall that the assumption of the Poisson distribution is that the mean and the
variance are the same. But it is not uncommon that a real dataset is roughly
Poisson-distributed, but perhaps because of other processes (e.g. unmeasured
predictors of the outcome) there may be extra-Poisson dispersion (e.g. the mean
» variance).
This excess variation is called over-dispersion. It is a problem because it leads to
biased statistical testing. You may also have learned that an alternative to the
Poisson distribution is the Negative Binomial distribution, which also works for
count data, but has an extra dispersion parameter. However instead of using the
Negative binomial directly, we will look at the Poisson-Gamma mixture model,
which is achieves similar ends, and is a natural fit in the Bayesian framework
that is common in many disease mapping applications.
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The Poisson-Gamma mixture model is a pairing of two parametric distribu-
tions to better account for squirrely data and possible extra-Poisson variance.
More specifically the gamma distribution serves as a prior on the Poisson mean
parameter, 𝜃. In other words it describes how variable the deviations of the
Poisson mean can be.

In the package SpatialEpi, there is a function called eBayes() which estimates
Empirical Bayes smoothed estimates of disease burden (or more specifically of
relative excess risk or SMR), based on the Poisson-Gamma mixture.

First, let’s estimate the EB-smoothed relative risk. This function expects an
argument, Y, which is the vector of event counts, and an argument, E, the
expected count. Note that there is also an option to include a covariate matrix,
if you wanted to estimate covariate-adjusted EB-smoothed rates.

global_eb1 <- eBayes(vlbw$VLBW, vlbw$expect)
# names(global_eb1) # look at the object returned

names(global_eb1)

## [1] "RR" "RRmed" "beta" "alpha" "SMR"

Notice that the object global_eb1 that was returned by the function eBayes()
is actually a list with 5 elements. It includes the SMR (which is based on observed
data, not smoothed!), as well as the RR (mean estimate for the smoothed
relative risk), and RRmed (the median estimate for the smoothed relative risk,
which in our case is nearly identical to mean). Notice there are also estimates of
the 𝛽 (beta) and 𝛼 (alpha) parameters of the Gamma prior that were estimated
from the data.

We can now add the smoothed or stabilized estimates to our dataset and map
the raw or unsmoothed SMR compared to the Empirical Bayes smoothed SMR…

# this adds the smoothed relative risk (same as SMR) to the vlbw dataset
vlbw$ebSMR <- global_eb1$RR

smr_map <- tm_shape(vlbw) +
tm_fill('SMR',

style = 'quantile', palette = '-RdYlBu',
title = 'Std. Morbidity Ratio') +

tm_borders() +
tm_layout(main.title = 'Raw SMR of VLBW',

inner.margins = c(0.02, 0.02, 0.1, 0.05),
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legend.format = list(digits = 2))+
tm_shape(ga) +
tm_borders(lwd = 2, col = 'black')

eb_map <- tm_shape(vlbw) +
tm_fill('ebSMR',

style = 'quantile',
palette = '-RdYlBu',
title = 'Std. Morbidity Ratio') +

tm_borders() +
tm_layout(main.title = 'EB smoothed SMR of VLBW',

inner.margins = c(0.02, 0.02, 0.1, 0.05),
legend.format = list(digits = 2))+

tm_shape(ga) +
tm_borders(lwd = 2, col = 'black')

tmap_arrange(smr_map, eb_map)

Raw SMR of VLBW
Std. Morbidity Ratio

0.00 to 0.67
0.67 to 0.90
0.90 to 1.11
1.11 to 1.35
1.35 to 3.03

EB smoothed SMR of VLBW
Std. Morbidity Ratio

0.60 to 0.85
0.85 to 0.96
0.96 to 1.04
1.04 to 1.13
1.13 to 1.64

Each map is symbolized using an independent quantile categorization. As a
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result, notice two things about the map comparison above:

• The general patterns of highs and lows is quite similar, although not iden-
tical

• The cutpoints in the legend are relatively different.
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Visualizing Empirical Bayes VLBW rate smoothing

Looking a little more closely at the differences illustrated in the plot above we
can observe several things about Empirical Bayes smoothing in relation to both
population size and degree of parameter shrinkage towards the mean:

• The counties with the largest sample size (larger dots on plot) fall along
the diagonal where the observed and smoothed rates are most similar

• Conversely, the counties most likely to be ‘fanned out’ or off the diagonal
(indicating a different value in the observed versus smoothed) were those
with the smallest number of events (e.g. small dots)

• Similarly the bluer dots (those with least shrinkage) were also larger and
less extreme in value

• The redder dots (those with the most shrinkage) tended to be smaller.
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4.3.4.3 Estimating Bayesian exceedance probabilities from Poisson-
Gamma EB estimates

By estimating parameters for the Gamma-prior on the Poisson parameter, 𝜃, we
can describe not only the point estimates but actually can describe the entire
posterior distribution of our estimated smooth rate. The posterior distribution
is a way of saying that in Bayesian statistics there is not just one answer, but
instead a probabilistic range of answers. Whereas in frequentist statistics we
talk about confidence intervals, in Bayesian statistics the roughly corresponding
idea is called a credible interval, and is essentially specific thresholds of the
posterior.

The interpretation of credible intervals is not identical to confidence intervals,
but is close enough for now. While not necessary for disease mapping, it might
help for illustration to visualize the posterior estimate for two counties. One
is Dekalb county, which has a large population, and the other is Baker county
which had a small population. As you can see, the SMR (based on observed
data) are quite different, but the mean posterior estimate of the EB-smoothed
RR is nearly identical. You can also see the precision or certainty of each, with
much wider (greater) uncertainty for Stewart County as compared to Dekalb
county.
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To describe how likely or unlikely the EB-smoothed relative risk for a given
county is different from the null value of 1, we can use Bayesian exceedance prob-
abilities. These sound similar to the p-values we mapped with the probmap()
function, but their interpretation is different in the Bayesian framework. Specif-
ically, instead of the somewhat convoluted way we interpret p-values (e.g. “the
probability that we would observe counts as or more extreme in infinite repeated
samples, assuming the null were true”), the Bayesian exceedance probabilities
are more straightforward. Specifically it would simply be, “the probability that
the true parameter, 𝜃 is greater than 1.0, given the prior and observed data”.

The function called EBposththreshold() does this calculation, and requires
several arguments including the conventional observed and expected counts,
but also the two parameters ,alpha and beta estimated in the previous step.
We also need to specify the threshold beyond which we are interested in making
inference. For a relative risk that would typically be 1.0, but if you wanted
to ask about the probability of exceeding a different value (e.g. “what is the
probability that the RR is greater than 2?”), that is an option.

vlbw$eb2_prob <- EBpostthresh(Y = vlbw$VLBW,
E = vlbw$expect,
alpha = global_eb1$alpha,
beta = global_eb1$beta,
rrthresh = 1)

While not necessary for disease mapping, you might be interested in how dif-
ferent the Bayesian and frequentist approach are. This plot shows that for this
dataset.
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There are two things to note about the plot comparing the two estimates of
certainty or precision:

1. First, it is apparent that they are inversely related. In other words as
the frequentist p-value increases, the predictive probability from the
Bayesian model gets smaller. This is simply because they are evaluating
inverse parts of the same question. The frequentist p-value is evaluating
the probability of observing data more extreme than we have if the null
were true (e.g. small p-values lend support for rejection of the null). In
contrast the Bayesian exceedance probability is reporting the probability
that this county has an RR greater than 1.0. As such, a higher probability
is more consistent with true extremes, rather than spurious ones.

2. Second, they are largely consistent, albeit not identical to one another.
In other words they track along a diagonal suggesting that a county with
a given p-value has a corresponding and proportionate partner in the ex-
ceedance probability. The differences reflect the smoothing or stabilization
due to the EB methods.
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4.3.4.4 Mapping Poisson-Gamma EB estimates and exceedance

Finally, here is a map of the smoothed estimates and the indication for those
with high probability of being different from the Georgia average rate (e.g. prob-
ability of exceeding SMR of 1.0 is 95%).

# Identify counties with p-value < 0.05
pv <- vlbw %>%
mutate(pmap.pv = ifelse(SMR > 1 & pmap < 0.05, 1, 0)) %>%
group_by(pmap.pv) %>%
summarise() %>%
filter(pmap.pv == 1)

m3<- tm_shape(vlbw) +
tm_fill('SMR',

style = 'quantile',
palette = '-RdYlBu',
#breaks = c(0.13, 0.67, 0.9, 1.1, 1.4, 2.3),
title = 'Std. Morbidity Ratio') +

tm_borders() +
tm_layout(main.title = 'SMR of VLBW,\nGA 2018-2019',

inner.margins = c(0.1, 0.02,0.05,0.2),
legend.format = list(digits = 2)) +

# Add dark borders for significant
tm_shape(pv) +
tm_borders(lwd = 2, col = 'black') +
#tm_shape(ga) +
tm_borders(lwd = 1.5, col = 'black') +
tm_credits('Counties with higher than expected risk (p<0.05) highlighted with dark borders')+
tm_shape(ga) +
tm_borders(lwd = 1.5, col = 'black')

# Identify counties with EB exceedance probability > 0.95 (corresponds to p<0.05)
pv2 <- vlbw %>%
mutate(eb.pv = ifelse(ebSMR > 1 & eb2_prob > 0.95, 1, 0)) %>%
group_by(eb.pv) %>%
summarise() %>%
filter(eb.pv == 1)

m4 <- tm_shape(vlbw) +
tm_fill('ebSMR',

style = 'quantile',
palette = '-RdYlBu',
#breaks = c(0.13, 0.67, 0.9, 1.1, 1.4, 2.3),
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title = 'Std. Morbidity Ratio') +
tm_borders() +
tm_layout(main.title = 'Empirical Bayes smoothed\nSMR of VLBW',

inner.margins = c(0.1, 0.02,0.05,0.2),
legend.format = list(digits = 2)) +

# Add dark borders for significant
tm_shape(pv2) +
tm_borders(lwd = 2, col = 'black') +
tm_credits('Counties with higher than expected risk (p<0.05) highlighted with dark borders')+
tm_shape(ga) +
tm_borders(lwd = 1.5, col = 'black')

tmap_arrange(m3, m4)

SMR of VLBW,
GA 2018−2019

Counties with higher than expected risk (p<0.05) highlighted with dark borders

Std. Morbidity Ratio

0.00 to 0.67
0.67 to 0.90
0.90 to 1.11
1.11 to 1.35
1.35 to 3.03

Empirical Bayes smoothed
SMR of VLBW

Counties with higher than expected risk (p<0.05) highlighted with dark borders

Std. Morbidity Ratio

0.60 to 0.85
0.85 to 0.96
0.96 to 1.04
1.04 to 1.13
1.13 to 1.64

Comparing these two maps you will see that there are fewer significant counties
using the Empirical Bayes approach. This is not surprising, and consistent
with our goal of trying to separate the signal from the random noise. This
would suggest that at least some of the counties appearing to be significantly
different from the global rate, were in fact plausibly outliers with small amounts
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of information that cannot be stably and precisely estimated.
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Table 4.2: Vocabulary for Week 4

Term Definition

Bayesian methods

Methods of statistical
inference in which Bayes’
theorem is used to update
the probability for a hypothesis as
more evidence or information becomes
available. In disease mapping,
the Bayesian framework is
frequently used to accomplish
rate stabilization and smoothing
by using global or local data to
inform the ’prior’

Empirical Bayes methods

Estimation procedures in a
Bayesian framework in which the
prior distribution is estimated
from the data. In disease
mapping, Empirical Bayes
estimators use global or local
disease information as a prior in
estimating (and
smoothing/stabilizing) each local
rate

Global vs Local spatial
analysis

Global analysis evaluates a
pattern or trends that
characterizes the entire study
region; in contrast local analysis
characterizes patterns that are
unique to each sub-region of the
study area

Spatial dependence

When attribute values or
statistical parameters are, on
avreage, more similar for nearby
places than they are for distant
places. Spatial dependence is
evaluated by looking at pairs or
sets of places.

Spatial heterogeneity

Attributes or statistical
parameters are varied (e.g. not
homogenous) across sub-areas in
a broader region. In Disease
mapping we typically are
evaluating whether (and how
much) disease intensity (risk,
rate, prevalence) varies across
places.

Standardize
Morbidity/Mortality Ratio
(SMR)

The ratio of observed to expected
disease morbidity or mortality.
Often the ’expected’ is defined as
the overall population (or
study-specific) rate; in that case
the SMR indicates the relative
deviation of a specific unit from
the global or overall rate

Stationarity vs
non-stationarity

Many statistics assume that the
parameter, estimate, or property
is constant across sub-units. For
example if we take the average
height of a population, under
stationarity we would assume
that average applies equally to
sub-populations. In contrast,
non-stationarity implies the
parameter, estimate, or property
varies across sub-groups. In
spatial analysis stationarity is an
assumption of homogeneity, and
non-stationarity allows for
heterogeneity.
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Chapter 5

Disease Mapping II: Spatial
Empirical Bayes

5.1 Getting Ready

5.1.1 Learning objectives

Table 5.1: Learning objectives by weekly module

After this module you should be able to…
Compare and contrast the operationalization of distance or contiguity in
spatial statistics to sociologic and demographic theories of health relevant
processes and relationships in space
Apply and justify contrasting definitions of spatial weights matrix in
estimation of statistically smoothed disease maps

5.1.2 Additional Resources

• Anselin, L. Spatial Regression Analysis in R: A workbook. 2007.
• GeoDa Center Resources: Section on distance-based spatial weights
• GeoDa Center Resources: Section on contiguity-based spatial weights

119

https://dces.wisc.edu/wp-content/uploads/sites/128/2013/08/W14_Anselin2007.pdf
https://geodacenter.github.io/workbook/4b_dist_weights/lab4b.html
https://geodacenter.github.io/workbook/4a_contig_weights/lab4a.html
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5.1.3 Important Vocabulary

5.2 Spatial Thinking in Epidemiology

This is the first time where we will formally incorporate and make explicit what
spatial means in spatial analysis. Although all work up until now has been
represented on a map (thus spatially contextualized), we have not formally
incorporate spatial relationships into any aspect of analysis. Specifically, last
week we calculated statistical tests for heterogeneity, estimated precision or
statistical significance, and produced Empirical Bayes smoothed (stabilized)
estimates of parameters of interest.

But each of those tasks treated each spatial unit as if it were spatially or geo-
graphically independent of every other spatial unit. This assumption that units
are geographically independent is what I have referred to as aspatial analysis.

5.2.1 An argument for the relevance of space

To formally and explicitly incorporate spatial relatedness we need to be clear
about what constitutes spatial relationships. There are two aspects to con-
sidering spatial relatedness, and they apply to two sides of spatial thinking
about health. As discussed in the recorded lecture, the fundamental dimension
for spatial relations in geography is that of distance (and relatedly the idea of
proximity), whether that be euclidean (e.g. as the crow flies) distance, social
distance, or network distance.

On the one hand, distance is used as a metric for defining some aspect of lo-
cal population homogeneity that is distinct from the broader regional (e.g. study
region-wide) heterogeneity. In other words, based on Tobler’s First Law of Geog-
raphy, near things tend to be more alike (e.g. correlated although not necessarily
causally linked) than distant things (on average), implying a kind of dependence
or correlation among local units that might not be evident overall.

This concept – which seems to hold true for many human and non-human sys-
tems – means that when faced with sparse data, and concern for uncertainty,
we can ‘borrow’ statistical information from spatial neighbors to supplement
estimation of local disease parameters. This is exactly what we will do with
spatial Empirical Bayes estimation, where instead of using the overall (global)
rate of disease as the prior, we will use the local rate for neighbors surrounding
each entity as a kind of custom, place-specific prior.

But at a deeper level, distance is also important to spatial thinking in
epidemiology. This is because we hypothesize – and are interested in –
whether entities that are geographically or socially more connected share
health-relevant experiences. These experiences or exposures include microbial
space (e.g. person-to-person transmission of infectious agents), social norms
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(e.g. acceptability of smoking or body image perceptions), built environments
(e.g. lead exposure in municipal water systems, food environments), access to
health resources (e.g. health care, cancer screening), and access to opportunity
structures (e.g. good schools, safe streets, employment opportunities).

Distance is not only Cartesian!
The examples above emphasize the role distance in Cartesian (ge-
ographic) space. However, it is worth emphasizing how more com-
plex versions of distance and proximity could come into play.
For example, air travel makes the linear Cartesian distance be-
tween two places less relevant than the economic and social drivers
of flows of people back and forth when it comes to infectious dis-
ease transmission such as Zika or Ebola. There is a still a distance
dimension, but it is defined by the push and pull of human mo-
bility and migration.
It is possible to define spatial neighbors in these more abstract
(e.g. non-geographic) ways. For example, political scientists have
created spatial weights matrices that connect states not by their
geographic boundaries, but by how similarly their legislatures act
on policy decisions. In this way distance is a measure of ideology
rather than geography, but still has meaning for spatial analysis of
health. But for today we will focus on the more specific example
of geographic space rather than social, political, or economic space.

In sum, the notion of explicitly spatial analysis is a way to incorporate theo-
retical and conceptual aspects of how humans relate to one another and their
environment into our understanding of the distribution and determinants of
disease.

Whether we treat spatial dependence and relatedness as a primarily statisti-
cal feature for exploitation (e.g. as in spatial disease mapping with Empirical
Bayes), or as an attribute of the local ecosystem of disease generation, it is clear
that when and how neighbors are defined is influential on the final numerical
results and the inference we take from them. The definition of spatial neigh-
bors, and the corresponding symbolization of that relatedness with creation of
spatial weights matrices is a fundamental bridge between theory of geography
and meaning for spatial epidemiology.

5.2.2 On making meaning from neighbors

As will be discussed below, the primary means by which spatial epidemiologists
can make space explicit is by incorporating information about how places or
geographic units are related to one another; in other words the distance (prox-
imity, connectivity, contiguity, etc) between any single unit and all other units
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begins to put the pieces of the puzzle together into a whole. This is often done
through creation of a numerical weight that quantifies the distance between the
local unit and its neighbors (those presume to be proximate, at least to some
degree).

The challenge for the spatial epidemiologist is twofold:

1. Conceptualizing the spatial scale and extent at which a health-relevant
process of interest occurs

2. Translating that conceptual idea to an explicit definition of neighbors, and
therefore spatial weights

For areal analysis (e.g. spatial analysis of polygons), there are two broad classes
of neighborhood definitions: contiguity-based definitions and distance-based
definitions. In reality both are abstract expressions of ‘distance’, but they differ
in how ‘near’ and ‘far’ are operationalized.

While we are primarily focused on analysis of areal units in this course, it is
possible to create neighbor definitions among point-referenced data by using a
tessalation process such as creation of Thiessen polygons (e.g. see this discussion
on Contiguity-based weights for points).

The table below will be explored and explained in more detail
in the online lectures, and in the lab activity. The key takeaway
at this point is that we can define which units are near other
units using different definitions, and those definitions have slightly
different assumptions and results.

Below is a brief summary of several common neighbor definitions:

Basic
metric Description

Rook Contiguity Unit A and unit B are neighbors if and only if
they share boundary edges. Second or higher-order
contiguity refers to units sharing edges with index
unit (1st order contiguity), plus units that share
boundary edges with all 1st order neighbors; and
so forth)

Queen Contiguity Unit A and unit B are neighbors if they share
either boundary edges or boundary corners
(e.g. vertices). Second or higher-order contiguity
refers to units sharing edges with index unit (1st
order contiguity), plus units that share boundary
edges with all 1st order neighbors; and so forth)

https://geodacenter.github.io/workbook/4b_dist_weights/lab4b.html#distance-metric
https://geodacenter.github.io/workbook/4b_dist_weights/lab4b.html#distance-metric
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Basic
metric Description

Sphere
of
influence
graph
neigh-
bors

Contiguity Graph-based neighbors start by creating Delauney
triangles from the centroid of units. Neighbors are
defined by the edges of the triangles.

Fixed
distance

Distance Unit A is a neighbor of unit B, if unit A (or
perhaps the centroid of the unit) falls within a
fixed-distance buffer created around unit B (or
perhaps the centroid of the unit).

K-
nearest
neigh-
bors
(KNN)

Distance Unit A is a neighbor of unit B, if when a
rank-order of closest to furthest neighbors from
Unit B is created, Unit A is ranked ≤ 𝑘. In other
words, if 𝐾 is set to 5, then unit A is neighbor of
B if it is among the 5 nearest neighbors. KNN is
an asymmetric definition; it is possible for A to be
neighbors with B, but B may not be a neighbor to
A.

Inverse
distance

Distance Instead of using a fixed threshold of distance
(e.g. a buffer) or a fixed number of near neighbors
(e.g. KNN), this strategy describes proximity or
‘nearness’ as the inverse of the Euclidean or
road-network distance (or possibly inverse of
distance-squared).

The choice of which neighbor definition to use is influenced by several study-
specific factors, some of which can be in conflict with others:

• Variation in size of areal units across the study area. If some areal units
are very small (e.g. counties in the Eastern U.S.) and some are very large
(e.g. counties in the Western U.S.), then the geographic area defined by
adjacent counties will be quite different (e.g. think about how long it takes
to drive across two counties like Dekalb and Fulton in Atlanta, versus
how long it might take to traverse two counties in Nevada or Utah). In
contrast, fixed-distance neighbors will have a more consistent among of
linear distance between index units and their neighbors.

• Assumptions or requirements of the statistical analysis of interest. Some
algorithms require/expect features such as neighbor symmetry or spatial
weights row standardization to account for unequal numbers of neighbors.

• The assumed meaning of space in the analysis. It is possible that, for
instance, the meaning of distance in Western counties is different where
further travel to basic services is more the norm than in denser areas in
the East.
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• The purpose and audience of the map. It is important to make the analysis
accessible and interpretable to the target audience.

• Aspects of the geography including islands or presence of non-contiguous
units (e.g. Hawaii, Alaska, Puerto Rico)

5.3 Spatial Analysis in Epidemiology

To apply these concepts to specific spatial analysis, we will continue to use the
Georgia very low birthweight dataset used in the previous module of the eBook.
As a reminder, this is a county-level dataset for the 𝑛 = 159 Georgia Counties
containing the count of all live births (denominator) as well as the count of
VLBW births (weight at birth < 1500 grams) babies in 2018-2019. These data
were derived from the Georgia OASIS website.

In this section we first introduce how to create and examine several different
spatial neighbor definitions. But we never create neighbors just for their own
sake. The purpose of creating spatial neighbors and weights matrices is always
to use the definition in a spatial analysis. Later in this section you will see the
use of the spatial weights for producing spatial Empirical Bayes estimates.

5.3.1 Creating contiguity neighbor objects

In R, the spdep package has a series of functions useful for creating spatial
weights matrices. In general, the process of going from a spatial object (e.g. an
sf class data object) to a usable spatial weights matrix requires more than one
step, and the steps vary depending on the eventual use.

Since we are starting with areal (polygon) data, the starting point is to use a
utility function, poly2nb(), that take a polygon spatial object (of class sf or
sp) and determine which specific polygon regions are contiguous with (touch,
share boundaries with) other regions. If you review the help documentation, you
will see that the function takes a spatial sf object as the input, with arguments
specifying whether to use Queen contiguity (default; Rook is the alternative).
The function returns something called a neighbor list.

# load the package spdep
library(spdep)

# Create a queen contiguity neighbor list
queen_nb <- poly2nb(vlbw, queen = TRUE)

# Examine the resulting object
summary(queen_nb)

https://oasis.state.ga.us/
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## Neighbour list object:
## Number of regions: 159
## Number of nonzero links: 860
## Percentage nonzero weights: 3.401764
## Average number of links: 5.408805
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10
## 1 4 12 29 36 37 28 9 1 2
## 1 least connected region:
## 64 with 1 link
## 2 most connected regions:
## 1 66 with 10 links

The summary() function for objects of class nb (a neighbor object created in
spdep) provides some useful high-level info, including the presence of regions
with zero links (no neighbors – a problem that could occur with islands, for
example), and the distribution of number of links or neighbors.

You might want to look at the structure of the queen_nb object also, either
using str(queen_nb), or perhaps just viewing the first few elements in the list
(e.g. because nb objects are of class list in R, use the double-bracket indexing
of lists like this queen_nb[[1]] to view the neighbors for the first region).

The neighbor object is essentially a list with length equal to the number of
regions (𝑛 = 159 counties in this case). The elements in the list correspond to
the order of the input dataset, with the first list item being the first county in
the current sort order. Each element in the list is a vector identifying which
other counties are neighbors to it.

One important attribute of spatial relationships is whether they are symmetric
or not. In the context of spatial neighbors, spatial symmetry implies that if
𝑟𝑒𝑔𝑖𝑜𝑛𝑖 is a neighbor to 𝑟𝑒𝑔𝑖𝑜𝑛𝑗, then 𝑟𝑒𝑔𝑖𝑜𝑛𝑗 is also a neighbor to 𝑟𝑒𝑔𝑖𝑜𝑛𝑖.
Contiguity neighbors are symmetric by design: if the definition of neighbor is
shared boundaries, that is true for either partner in the relationship. We will
see below that not all definitions of spatial relationships and neighbors result
in symmetric relationships. A quick way to check whether a neighbor object is
symmetric or not is this code:

is.symmetric.nb(queen_nb)

## [1] TRUE

To better understand a set of spatial relationships, it can be useful to visualize
neighbor links or connections when choosing among a neighbor definition, simply
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to see the relative density and pattern of connectivity. Note that the function
plot.nb() has the nb object as its first argument, but must also include a
matrix of centroids as the second argument. The reason is that the nb object
defines which region connects to which, but does not say where they are in space.
The centroids tell the plot where each link or line begins and ends.

# Create a matrix of the x,y coordinates for each county centroid
ga_cent <- st_centroid(st_geometry(vlbw))

# Plot the outlines of counties with light grey boundaries
plot(st_geometry(vlbw), border = 'grey')

# Add the plot of the Queen contiguity connections
plot.nb(queen_nb, ga_cent, points = F, add = T)

Notice how the density of neighbors is generally lower on the coast and at
state boundaries. This systematic difference in neighbors can produce patterns
sometimes referred to as edge effects. These edge effects could be a source of
bias, because counties in the interior of the state have more neighbors (and thus
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more ‘local information’ on average) than border counties. This is especially true
when the absence of neighbors is artificial as in the case of counties bordering
Alabama, Tennessee, North or South Carolina, Florida. In contrast, counties
on the coast have a ‘real’ absence of neighbors.

5.3.2 Creating k-nearest neighbors

K-nearest neighbors is a flexible approach to assuring balanced number of neigh-
bors, and can help when the size and density of the spatial regions varies across
the study area. For instance a fixed-distance buffer (e.g. perhaps counties within
50 miles) might work to identify relevant neighbors in the Eastern or Midwest-
ern U.S., but in the West, where a county may be 100-200 miles across, there
would be zero neighbors with this definition. But with K-nearest neighbors,
both smaller Eastern and larger Western counties would have neighbors (albeit
of differing spatial scales).

Because k-nearest neighbors does not depend on either arbitrary
fixed distance, nor on contiguity, it will always produce neigh-
bors even for islands. For example in analyses of U.S. states,
Alaska and Hawaii have no contiguous neighbors. However, a k-
nearest neighbor approach would still assign the nearest neighbor
regardless of how far away. For instance the nearest neighbor to
Hawaii might be California. The question you must ask your-
self is whether it is meaningful to say Hawaii and California are
neighbors. If you are interested in food environment, that seems
implausible. However, there is a great deal of social, cultural, and
economic interaction between Hawaii and California; so in some
instances this could be a plausible and meaningful connection.

To create a k-nearest neighbor object, we first must identify the relative proxim-
ity of candidate neighbors. To define who is nearest to whom, by convention we
measure Euclidean distance between the centroids of polygons (literally the geo-
metric center), under the assumption that this is an average location to describe
the polygon. This requires two steps.

First, the knearneigh() function takes these centroids, calculates all pair-wise
distances, sorts them from closest to furthest, and then selects the 𝑘 nearest (or
smallest distance) units. Then the knn2nb() function takes this information
and creates a formal nb or neighbor object.

# First create two sets of neighbors: 2 nearest and 5 nearest
knn2 <- knearneigh(ga_cent, k = 2)
knn5 <- knearneigh(ga_cent, k = 5)
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# Now take those lists of neighbors and make an nb object
knn2_nb <- knn2nb(knn2, row.names = vlbw$GEOID)
knn5_nb <- knn2nb(knn5, row.names = vlbw$GEOID)

summary(knn5_nb)

## Neighbour list object:
## Number of regions: 159
## Number of nonzero links: 795
## Percentage nonzero weights: 3.144654
## Average number of links: 5
## Non-symmetric neighbours list
## Link number distribution:
##
## 5
## 159
## 159 least connected regions:
## 13121 13029 13135 13127 13271 13279 13301 13007 13143 13221 13137 13289 13105 13051 13073 13189 13103 13319 13209 13317 13241 13033 13261 13249 13309 13113 13123 13157 13215 13311 13265 13019 13291 13171 13263 13001 13303 13027 13305 13133 13251 13163 13195 13013 13153 13205 13025 13009 13021 13217 13213 13151 13185 13181 13313 13183 13031 13245 13141 13191 13049 13079 13283 13083 13139 13107 13179 13229 13075 13267 13039 13077 13219 13315 13285 13095 13115 13225 13045 13035 13161 13097 13071 13237 13081 13011 13109 13017 13255 13197 13003 13015 13275 13211 13235 13131 13065 13293 13287 13155 13227 13173 13223 13277 13145 13297 13129 13295 13055 13165 13243 13047 13233 13187 13117 13111 13063 13067 13207 13101 13167 13193 13239 13149 13069 13125 13085 13091 13201 13061 13321 13169 13281 13299 13037 13053 13307 13273 13159 13023 13093 13177 13257 13175 13269 13059 13089 13043 13147 13057 13231 13253 13087 13005 13119 13247 13099 13199 13259 with 5 links
## 159 most connected regions:
## 13121 13029 13135 13127 13271 13279 13301 13007 13143 13221 13137 13289 13105 13051 13073 13189 13103 13319 13209 13317 13241 13033 13261 13249 13309 13113 13123 13157 13215 13311 13265 13019 13291 13171 13263 13001 13303 13027 13305 13133 13251 13163 13195 13013 13153 13205 13025 13009 13021 13217 13213 13151 13185 13181 13313 13183 13031 13245 13141 13191 13049 13079 13283 13083 13139 13107 13179 13229 13075 13267 13039 13077 13219 13315 13285 13095 13115 13225 13045 13035 13161 13097 13071 13237 13081 13011 13109 13017 13255 13197 13003 13015 13275 13211 13235 13131 13065 13293 13287 13155 13227 13173 13223 13277 13145 13297 13129 13295 13055 13165 13243 13047 13233 13187 13117 13111 13063 13067 13207 13101 13167 13193 13239 13149 13069 13125 13085 13091 13201 13061 13321 13169 13281 13299 13037 13053 13307 13273 13159 13023 13093 13177 13257 13175 13269 13059 13089 13043 13147 13057 13231 13253 13087 13005 13119 13247 13099 13199 13259 with 5 links

Notice how the summaries are not so interesting when we force everyone to have
the same number of links! However in checking the symmetry, and important
concern rises:

is.symmetric.nb(knn2_nb)

## [1] FALSE

is.symmetric.nb(knn5_nb)

## [1] FALSE

K-nearest neighbors will almost always produce asymmetric neigh-
bors. Thinking about U.S. states is perhaps an easy way to un-
derstand this. Consider the state of Hawaii: the nearest states
are probably California, Oregon, and Washington. However the
inverse is not true. The nearest 2 (or 3 or 4 or 5) states to Califor-
nia are all in the contiguous ‘lower 48’ states; Hawaii is certainly
not among the nearest places to California.
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This asymmetry is not a problem for spatial analytic tasks including the spatial
Empirical Bayes smoothing we will do this week. However, for some cluster
analysis or other analyses in future weeks, neighbor symmetry is assumed and
required. If you choose a k-nearest neighbor definition, but you also require
symmetric spatial relationships, you can force symmetry in at least two ways.

First, you could specify sym = TRUE in the knn2nb() call above. That essen-
tially breaks the rigid k-nearest neighbors and forces reciprocity in ‘neighborli-
ness’. The second method is appropriate if you have already created asymmetric
neighbors, but wish to retrospectively force symmetry: make.sym.nb(). This
simply takes an asymmetric neighbor object and adds links to make the rela-
tionships symmetric. Note, however, that this alters the number of links or
neighbors for each region: some will now have more than others.

knn5_symmetric <- make.sym.nb(knn5_nb)
summary(knn5_symmetric)

## Neighbour list object:
## Number of regions: 159
## Number of nonzero links: 910
## Percentage nonzero weights: 3.599541
## Average number of links: 5.72327
## Link number distribution:
##
## 5 6 7 8
## 73 61 21 4
## 73 least connected regions:
## 13121 13135 13127 13289 13105 13051 13103 13319 13317 13241 13033 13249 13113 13157 13215 13171 13027 13133 13251 13013 13009 13021 13181 13031 13245 13049 13079 13083 13107 13179 13267 13039 13219 13315 13285 13095 13225 13081 13017 13275 13235 13155 13145 13295 13055 13165 13243 13047 13233 13111 13207 13101 13167 13239 13149 13091 13201 13061 13281 13053 13159 13093 13177 13257 13175 13059 13147 13057 13231 13253 13087 13005 13099 with 5 links
## 4 most connected regions:
## 13007 13223 13129 13187 with 8 links

is.symmetric.nb(knn5_symmetric)

## [1] TRUE

Note that now there are four counties with 8 links, rather than 5. That means
each of those counties were the nearest to at least 3 others, even though those
3 were not nearest to them.
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5.3.2.1 Visualizing differences between competing neighbor defini-
tions

As a spatial analyst, you might be very interested in how the
choice of neighbors affects your results. To better understand
what is different from one definition to the next it can be helpful
to visualize them side-by-side. This visualization is not likely of
interest to a broader audience. In other words you would prob-
ably not publish this map. Instead its production helps you, the
spatial epidemiologist, better understand your options and make
informed decisions.

Using just base-R plotting (you could create fancier maps if desired with ggplot
or tmap), we can easily visualize the county polygons, with lines connecting the
centroids of neighboring counties as an indication of shared influence, contact,
or interaction.

The function plot.nb() requires the spatial neighbor object (e.g. object of class
nb), a matrix of the 𝑥, 𝑦 locations of polygon centroids, and then does the work
of drawing the connecting lines.

The function in the code below named diffnb() is simply a utility function to
compare two nb objects to determine what is the same and what is different.
We can then plot the different values in red in order to quickly see what differs
from one neighbor definition to the next.

par(mfrow = c(1, 3), # set plotting space for 2 side-by-side plots
mar = c(.2,.2,1,.2)) # Set margins for plotting

# Plot the knn = 2 neighbor connections
plot(st_geometry(vlbw), border = 'grey', main = 'knn = 2')
plot.nb(knn2_nb, ga_cent, point = F, add = T)

# Plot the knn = 5 neighbor connections
plot(st_geometry(vlbw), border = 'grey', main = 'knn = 5')
plot.nb(knn5_nb, ga_cent, point = F, add = T, col = 'blue')
plot.nb(diffnb(knn2_nb, knn5_nb), ga_cent, point = F, add = T, col = 'red')

# Plot the knn = 5 AND the differences (in red) when knn = 5 is made symmetric
plot(st_geometry(vlbw), border = 'grey', main = 'Symmetric Knn5')
plot.nb(knn5_nb, ga_cent, point = F, add = T, col = 'blue')
plot.nb(diffnb(knn5_nb, knn5_symmetric), ga_cent, point = F, add = T, col = 'red')
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knn = 2 knn = 5 Symmetric Knn5

par(mfrow = c(1,1))

It is no surprise that there are lots of red lines on the knn5 as compared with the
knn2. Every single county has 3 additional neighbors in the former compared
to the latter. However it is interesting to see how many initially asymmetric
relationships had to have added links in order to enforce symmetry (e.g. the red
lines in the right-hand plot, compared to middle).

5.3.3 Creating Graph-based triangle neighbor objects

The contiguity framework takes the reasonable approach that local implies direct
interaction as indicated by shared borders. However in many instances, the odd
shape of polygons means that regions could be quite close to one another but
not share a border. A different approach – one of two methods we’ll discuss
called graph-based neighbors – defines the local neighbors by relative proximity
using a geometry approach.
The process subdivides the space into non-overlapping triangles, using the cen-
troids of each region as vertices in the triangle. A neighbor is therefore any
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region that is connected by an edge (link) between two vertices (centroids).
More practically, this results in neighbor region that are near(ish) but are not
required to have touching-borders. Graph-based neighbor objects are symmetric
by design.

tri_nb <- tri2nb(ga_cent)
summary(tri_nb)

## Neighbour list object:
## Number of regions: 159
## Number of nonzero links: 918
## Percentage nonzero weights: 3.631185
## Average number of links: 5.773585
## Link number distribution:
##
## 3 4 5 6 7 8
## 1 18 40 63 31 6
## 1 least connected region:
## 15 with 3 links
## 6 most connected regions:
## 58 65 82 107 118 120 with 8 links

is.symmetric.nb(tri_nb)

## [1] TRUE

Look back at the summary for the queen_nb object created previously. This
graph-based neighbor definition results in slightly more connections for every
county as compared with Queen contiguity, but also reduces the variation in
number of links. The Queen had counties with as many as 10 links and some with
only 1 link; in contrast this graph-based definition results in counties ranging
from a minimum of 3 neighbors to a maximum of 8.

To visualize the triangularized neighbors we can plot their links, next to the
Queen contiguity to compare.
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Queen contiguity Triangle neighbors

Notice how the graph-based neighbors have strange connections along the West-
ern border of Georgia. This is because the Delauney triangle algorithm makes
unexpected connections between centroids along edges. If we thought these
were unreasonable spatial relationships (I think they are!), we can prune them
down by using a Sphere of Influence graph to restrict to more proximate re-
lationships. In most instances, carrying out this pruning to produce sphere of
influence graph neighbors is most sensible as compared to using the product we
have at this stage.
The code is a little intimidating looking: It includes some nested functions where
the original triangle neighbor object is fed into the soi.graph() function, which
itself is fed into the graph2nb() function. But basically what it is doing is
looking for ties or connections defined by the triangularization algorithm that
are also proximate.

soi_nb <- graph2nb(soi.graph(tri_nb, ga_cent))

summary(soi_nb)

## Neighbour list object:
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## Number of regions: 159
## Number of nonzero links: 850
## Percentage nonzero weights: 3.362209
## Average number of links: 5.345912
## Link number distribution:
##
## 3 4 5 6 7 8
## 11 35 32 53 25 3
## 11 least connected regions:
## 14 15 21 64 71 87 96 120 123 124 152 with 3 links
## 3 most connected regions:
## 65 82 107 with 8 links

To see how Queen neighbors compares to each we can plot them:
Triangle neighbors Triangle neighbors Sphere of Influence pruning

5.3.4 Creating fixed-distance neighbors

The concept of buffering around locations to define exposure is probably famil-
iar. It is not uncommon for exposures such as access to health services, healthy
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food stores, or exposure to toxin emitters to be quantified using fixed-distance
buffers. The fixed-distance neighbor definition is therefore a natural extension,
where we believe that the definition of local or near can be described by who
(or where) falls within a given radius. In that way it is different from all of the
previous approaches because neither sharing borders, nor being the k-nearest
neighbor is required.

All that is required is that the place (or more specifically the centroid of the
place), falls within the designated distance. The number of other units falling
within a given threshold could range from zero to the maximum number of units
in the study, and certainly could vary from one location to another (e.g. thinking
again about distinctions between Eastern and Western counties in the U.S.).

Determining an appropriate distance can be challenging unless there is clear
theory or evidence (e.g. the distance required to avoid exposure to radiation
from a fixed point source). Often analysts consider a range of distances to
understand how or whether the pattern changes under competing scenarios.
This approach will be used more when we investigate spatial clusters of disease.

To define fixed-distance neighbors, we use the function dnearneigh() and must
define both a minimum distance (probably but not always set at zero), and a
maximum distance defining the buffer.

Beware of using distance measures for unprojected data.
Note that the distance parameters are described on the scale of
the coordinate measures of the spatial object. In this case, the
spatial object is projected, and the units are meters. Therefore
a distance of 1000 is 1 kilometer. However, for unprojected data
the units are angular degrees, and not readily interpretable.

Here we calculate neighbors for two distance buffers: all counties within 25km
and all within 50km of the centroid of each county are neighbors; all other coun-
ties are not neighbors. Notice that the output of each instance of dnearneigh()
is not just the distances themselves, but is actually a formal neighbor (nb) ob-
ject.

dist_25 <- dnearneigh(ga_cent, d1 = 0, d2 = 25000)
dist_50 <- dnearneigh(ga_cent, d1 = 0, d2 = 50000)
summary(dist_50)

## Neighbour list object:
## Number of regions: 159
## Number of nonzero links: 1072
## Percentage nonzero weights: 4.240339
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## Average number of links: 6.742138
## Link number distribution:
##
## 3 4 5 6 7 8 9 10 11 12
## 10 18 20 21 33 21 21 10 4 1
## 10 least connected regions:
## 4 14 22 41 61 71 96 120 152 153 with 3 links
## 1 most connected region:
## 156 with 12 links

We can compare the linkages of these two distance bands to one another:

25 km neighbors 50 km neighbors

Or we could compare one to a previous definition (e.g. the Queen contiguity).
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Queen Difference of Queen & 50−km dist

5.3.5 From spatial neighbors to spatial Disease Mapping

The main reason for struggling through all of the preceding ins and outs of
spatial neighbors is because we would like to define a reasonable version of local
given a spatial dataset, and use that definition to advance spatial epidemiologic
goals. As discussed above, a primary goal is the production of statistically stable
rates, with less bouncing around in parameters simply due to small denomina-
tors.

To state it again: statistics cannot solve some fundamental problems of sparse
data! However, statistical disease mapping methods, including Empirical Bayes
and fully Bayesian methods, can use all available information to recover impor-
tant underlying geographic trends in some instances.

5.3.5.1 Empirical Bayes Overview

As introduced last week, Bayesian thinking is a mathematical operationalization
of a relatively intuitive process we all engage in: we often have prior infor-
mation or prior beliefs about what effect size or risk or rate is plausible,
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informed by our experiences and the literature and evidence to date. We look
at the result from our analysis (e.g. the data or likelihood), and we internally
(often sub-consciously) combine those pieces (the prior and the data) to develop
a new, updated belief, or posterior belief.

The Bayesian process is a framework for moving this implicit cognitive pro-
cess out into the open, by stating mathematically what our prior belief is, and
therefore how we arrived at a new updated, posterior, belief.

Empirical Bayes disease rate smoothing is a process by which we take a set
of regions, and consider each of them as data, with the question, ‘What is the
truest underlying rate of disease in this place?’ We compare these observed data
with some prior belief or expectation of what the rate could plausibly be (not
specifically, but approximately or within a range).

Where we get the prior is important and potentially impactful; last week for
aspatial Empirical Bayes smoothing we used the overall average rate for the
entire study region (e.g. state of Georgia) as the prior. In other words, we sum
all of the cases across spatial units (e.g. counties), and all of the population
at risk across those units, to calculate a single reference rate, and the variance
around that expectation.

This reference rate (the prior) was then combined with the observed data in a
weighted fashion where the prior is weighted higher in small-population regions,
and the data is weighted higher in large-population regions. The result of this
weighted calculation is a posterior or smoothed estimate of the rate.

Last week we calculated the aspatial Empirical Bayes estimate of very low birth-
weight. The prior information for this estimation comes from the size of each
county’s expected count. Specifically a mean, 𝜇, and variance, 𝜎2 are estimated
from all 𝑛 = 159 counties expected count, and this single, global, overall prior
was used for the strategy used last week.

# Calculate aspatial EB
global_eb1 <- eBayes(vlbw$VLBW, vlbw$expected)

# Add the crude/observed SMR to the data
vlbw$eb_global <- global_eb1$RR

# Convert the aspatial EB RR to a smoothed aspatial EB rate by multiplying by referent rate, r
vlbw$EB_global <- r * vlbw$eb_global
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Beware of what output any given function is providing! One pos-
sible place for confusion here is that the output from the global
aspatial Empirical Bayes estimate using eBayes() was the excess
relative risk of each county as compared to the global referent
(e.g. the statewide prevalence of VLBW). However the function
we use for spatial Empirical Bayes (below) will output a rate rather
than a relative excess risk.
Luckily those two are closely related. The RR from eBayes() rep-
resents the relative deviation of each county from the statewide
average. Because we know the global average (e.g. we calculated it
as r), simply multiplying the RR value for each individual county
by the single global referent, r, gives us an aspatial Empirical
Bayes smoothed estimate of the rate for each county. This will
therefore be comparable with the estimates from the spatial Em-
pirical Bayes estimators.

5.3.6 Spatial Empirical Bayes

By using our newly-created definitions of local neighbors among Georgia counties
we can extend the Empirical Bayes approach by changing the source of the prior
information.

In the aspatial or global EB, the total rate for all of Georgia was the prior
reference rate. However another option for providing statistical information
about locally-varying expected rates is to use the average of one’s neighbors as a
prior. This produces a sort of borrowing of statistical information through space,
under the assumption that the local counties tell us more about a specific place
than do counties far away.

Note that there is no expectation that counties next to one another have the
same risk or rate, but instead that on average the local information is more in-
formative than non-local (global) prior information. That being said, there are
statistical approaches for disease mapping when you believe important spatial
dissimilarities exist between neighbors, or where you are searching for bound-
aries between areas of high and low rates. These can be implemented in the
package CARBayes which will be introduced in the upcoming (optional) section
on fully Bayesian disease mapping.

The spatial EB, thus follows the same process as the global or aspatial EB, but
with a different prior. And because the prior is defined by the local neighbors,
the different choices of neighbor object will likely have at least some influence
on the resulting geographic smoothed patterns.

The function for estimating spatial Empirical Bayes is EBlocal() from the
spdep package, and it requires not only the count of events and the count of
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population at risk for each county, but also a nb neighbor object. Although
we highlighted the importance of neighbor symmetry above for some spatial
analysis, symmetric neighbors are not required for spatial Empirical Bayes esti-
mation.

NOTE:
The help documentation state that EBlocal() requires “a nu-
meric vector of populations at risk…” to represent the denomi-
nator for rate estimation. For the purposes of this lab, that is
exactly what you want. But note that if – as we did last week
– you used indirect adjustment to calculate the age-adjusted ex-
pected count, you could also feed these expected counts to the
EBlocal() function.
The difference is that instead of the output from the function
being spatially smoothed rate or risk or prevalence (e.g. events
divided by population at risk), the output will instead by the
spatially smoothed excess relative risk (RR) or SMR (e.g. the
ratio of observed to expected).

# Estimate spatial (local) EB under the Queen contiguity neighbor definition
eb_queen <- EBlocal(vlbw$VLBW, vlbw$TOT, nb = queen_nb)

# The output fro EBlocal() is a 2 column data.frame. The second column is the EB estimate
vlbw$EB_queen <- eb_queen[,2]

NOTE: there is currently no function in R to estimate spatial EB
rates with credible/confidence intervals or p-values, as we could
with the Poisson-Gamma model for aspatial. Fully Bayesian dis-
ease mapping (e.g. in Disease Mapping IV) would be the best ap-
proach if spatial methods producing credible/confidence intervals
are desired.

Now we can create a spatial EB estimate for other neighbor definitions in order
to understand how robust or sensitive our ultimate results are to the choice of
neighbors.

# Use the sphere of influence-pruned Delauney triangle definition
eb_soi <- EBlocal(vlbw$VLBW, vlbw$TOT, nb = soi_nb)
vlbw$EB_soi <- eb_soi[,2]

# Use the k-nearest neighbors (k=5) definition
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eb_knn5 <- EBlocal(vlbw$VLBW, vlbw$TOT, nb = knn5_nb)
vlbw$EB_knn5 <- eb_knn5[,2]

# Use the 50-km fixed distance neighbors
eb_dist50 <- EBlocal(vlbw$VLBW, vlbw$TOT, nb = dist_50)
vlbw$EB_dist50 <- eb_dist50[,2]

5.3.6.1 Visualizing alternate smoothing approaches

Here is some code for simple visual comparison of the raw/observed, aspatial
EB, and a variety of spatially-smoothed EB estimates. As you review these
maps, you might ask yourself the following questions:

• Where does any EB smoothing versus the raw/observed estimates differ?
• Where do the spatial EB estimates differ from the aspatial EB estimate?
• And what differences do you notice among the various spatial EB esti-

mates, distinguished by their unique definitions of local?

Unsmoothed
0.0% to 1.2%
1.2% to 1.6%
1.6% to 2.0%
2.0% to 2.5%
2.5% to 5.5%

Aspatial EB
1.1% to 1.5%
1.5% to 1.7%
1.7% to 1.9%
1.9% to 2.1%
2.1% to 3.0%

Queen contig
0.8% to 1.5%
1.5% to 1.8%
1.8% to 2.0%
2.0% to 2.4%
2.4% to 4.1%

Delauney
0.8% to 1.5%
1.5% to 1.8%
1.8% to 2.0%
2.0% to 2.4%
2.4% to 4.1%

Knn = 5
0.9% to 1.4%
1.4% to 1.8%
1.8% to 2.0%
2.0% to 2.3%
2.3% to 3.8%

50−km fixed
0.9% to 1.5%
1.5% to 1.8%
1.8% to 2.0%
2.0% to 2.4%
2.4% to 3.8%
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As we saw last week, there are some differences between the observed (crude)
rates and the aspatial EB. However we can see even more dramatic differences
for all four of the spatial EB rates as compared with either observed or aspatial.
Among the spatial EB estimates there are only minor differences suggesting that
– among this set of neighbor definitions, and for this outcome – there is relatively
consistent patterns of VLBW regardless of choice of neighbors (e.g. our answer
is relatively robust to neighbor definition).

5.3.7 Final thoughts: Making choices

Over the past two weeks we have quickly amassed a large number of analytic
tools to address one problem in spatial epidemiology: reliably characterize spa-
tial heterogeneity in the presence of rate instability and uncertainty due to data
sparsity. These analytic strategies include the two approaches to Empirical
Bayes smoothing, but also the myriad of neighbor definitions for when we do
choose a spatial approach.

Unfortunately there is no simple rule to follow when choosing which tool to
use, but below is a summary of considerations. Ultimately you make decisions
in the context of the epidemiologic question, the constraints of the data, and
the audience or end-user of the results. As with many things in epidemiologic
analysis, there is an important role for science but also a need for experts who
can engage in the art of analysis.

Method Uses Assumptions and comments
Aspatial
Empirical
Bayes

Smooth or shrink local
rates towards global
(overall) reference rate,
with shrinkage inversely
proportionate to variance
/ sample size in local
region. In one simulation
study, aspatial (versus
spatial) EB minimized
mean-squared error
(MSE) when the outcome
is rare.

1. The best prior estimation of
plausible rates (mean and
variance) is the overall average.
2. The reason for sparsity is
about both numerator and
denominator (e.g. both a rare
disease, and small populations
at risk).
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Method Uses Assumptions and comments
Spatial
Empirical
Bayes

Smooth or shrink local
rates towards local
reference. In simulation
study, spatial (local) EB
outperformed aspatial
when outcomes were not
rare.

1. There is at least some spatial
auto correlation in rates such
that nearby-regions rates serve
as a more informative prior
than the global average. 2. The
reason for sparsity is primarily
about the denominator
(e.g. small population at risk),
but the health outcome itself is
not rare (in the overall region).

5.3.7.1 Choosing ‘neighborhood’ definitions

As you can see, there are a lot of ways of describing local, and we haven’t even
talked about inverse-distance weighting. So how do you go about choosing one
definition over another? This is an example of the intersection of the art and
science of spatial epidemiology.

So, you might wonder how one decides when to smooth or not smooth, and when
smoothing, which neighbor definition to use? There is a lot written about this
and very few final answers. There is some evidence that approximately 6 neigh-
bors provides a nice balance between informative prior information from local
units versus biased estimates. But beyond that very broad recommendation,
there are three general approaches to selecting a neighbor definition:

1. By maximizing precision or fit - this method is statistical in nature
and implies that best smoother fits the data best. It is possible to estimate
the mean-squared error (MSE) or the root mean squared error (RMSE)
to describe how far, on average, each observed rate is from the observed
data, with the idea being that the closest average distance is best. We will
discuss extensions of this idea of model fit when we move to fully Bayesian
mapping. There is code below to estimate the RMSE.

2. By theory, context, or question - most of my emphasis in explaining
the neighbors has been on this approach. It is clearly important for the
analyst to bring clarity about the question at hand, and the local context,
to the decision of what is sensibly local for a given disease or health out-
come. In some instances, one method clearly stands out from the others.
However, it is not uncommon that there is moderate support (theoreti-
cally) for multiple. As you can see if you mapped the methods above, in
our case there is only minor difference between the definitions for these
data.

3. By empirically estimating weights - I will not be covering this ap-
proach further. However, briefly, the idea here is to use the evidence for
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spatial auto correlation to inform how spatially important one unit is to
another.

My bottom line recommendation is to think spatially and consider the data,
question, and goals at hand. For the purposes of disease mapping, error re-
duction and precision are driving goals, so comparing RMSE across competing
options could make sense. However for other purposes, statistical fit might
not equate with unbiased estimation of target parameters (the same is true for
non-spatial analysis!).

Below is one simple approach to calculating the root mean squared error
(RMSE). Recall that RMSE is the square root of the average squared difference
between an observed value and its model-predicted (in our case EB-smoothed)
value. The first bit of code is defining a simple function to calculate the RMSE.
I define the function to have 2 arguments: eb is the Empirical Bayes estimate
for 𝑟𝑒𝑔𝑖𝑜𝑛𝑖, and o is the observed rate for 𝑟𝑒𝑔𝑖𝑜𝑛𝑖.

RMSE <- function(eb, o){
sqrt(mean((eb - o)^2))

}

RMSE(vlbw$EB_global, vlbw$rate)

## [1] 0.006809047

RMSE(vlbw$EB_queen , vlbw$rate)

## [1] 0.006404844

RMSE(vlbw$EB_soi , vlbw$rate)

## [1] 0.006471757

RMSE(vlbw$EB_knn5 , vlbw$rate)

## [1] 0.006529195

RMSE(vlbw$EB_dist50 , vlbw$rate)
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## [1] 0.006433534

So based on this, which fits best? In this case, the RMSE is quite similar,
with slight advantage given to the spatial Queen contiguity definition. Although
this is not strong evidence for preferring one strategy over another based on
statistical fit alone. Therefore other factors (including purpose of map, audience,
and theory of place underlying analysis) will be important in making decisions.
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Table 5.2: Vocabulary for Week 5

Term Definition

Aspatial vs. Spatial

This distinction refers to whether
or not spatial proximity or
contiguity is explicitly
incorporated into an analysis
(spatial) versus whether spatial
units are treated as independent
of one another (aspatial)

Delauney triangulation

Geometric strategy for creating a
mesh of contiguous,
nonoverlapping triangles from a
dataset of points. If points are
the centroids of polygons, the
triangle edges become
graph-based definitions of spatial
neighbors

Distance

A fundamental dimension in
geography referring to the
strength of connectedness or
proximity in eculidean space,
social space, or network space.
Distance if fundamental because
we assume that a) entities that
are closer are, on average, more
alike than entities that are far
apart; and b) increasing distance
represents increasing friction or
imedance to social and
health-relevant interaction

Neighbor symmetry

An attribute of spatial
relationships in which it is
assumed that if spatial unit A is
a neighbor with B, then spatial
unit B is also a neighbor with A.
Some neighbor definitions (e.g.
k-nearest neighbors) do not
require symmetry.

Spatial neighbors

The set of spatial entities that are
determined to be ’near’ rather
than ’far’ (in binary terms) or
relatively ’closer’ or ’further’ (in
continuous terms). The definition
of ’neighbors’ is part of
specifying spatial relatedness.

Spatial weights matrix

Typically a square matrix (n
rows x n columns where
n=geographic units) indexing all
units on rows and columns. The
values in the matrix indicate the
spatial connectedness between all
pairs of units.

Toblers’ First Law of
Geography

All things are related, but near
things are more related on
average than distant things. Note
that there is some debate about
whether this statistical truism is
a universal ’Law of Geography’.
For example the ubiquitous
correlation of spatially adjacent
measures could occur for many
non-causal reasons including
confounding or selection.



Chapter 6

Disease Mapping III:
Introduction to Fully
Bayesian mapping

6.1 Getting Ready

6.1.1 Learning objectives

6.1.2 Additional Resources

• Waller LA, Carlin BP. Disease mapping. Chapman Hall/CRC handbooks
Mod Stat methods. 2010;2010(1979):217–43. (posted on Canvas)

• CARBayes package vignette
• CARBayesST spatio-temporal vignette

6.1.3 Important Vocabulary

6.2 Spatial Thinking in Epidemiology

6.2.1 What is Bayesian Inference?

In Disease Mapping I & II we were introduced to global (aspatial) and local
(spatial) Empirical Bayes estimation. In those modules, you were introduced
to Bayes Theorem, and to a very high-level idea of the importance of the prior,
likelihood, and posterior in Bayesian inference.
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https://cran.r-project.org/web/packages/CARBayes/vignettes/CARBayes.pdf
https://cran.r-project.org/web/packages/CARBayes/vignettes/CARBayes.pdf
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However we (intentionally) skirted over much detail in those sections. In this
section we go only a little bit deeper; to be clear there is a lot more to know
and learn about Bayesian inference than what is presented here. But hope-
fully this summary helps motivate the use of fully Bayesian analysis in spatial
epidemiology.

6.2.1.1 Frequentist versus Bayesian Inference

Frequentist statistics and inference are probably what you have learned as ‘statis-
tics’ up until now. In other words, it is typical that Bayesian inference is not
taught in depth, or even at all, in many statistics courses. There is an interest-
ing history for the current dominance of frequentist inference that is as much
about personalities, egos, and power as it is about utility. But that’s for another
day.

The core idea of frequentist inference centers on a mental model premised on
comparing the data that is observed to abstract thought experiment of what
would be expected under infinite repetitions. This strategy developed out of
agricultural trials and survey sampling; in other words in settings where it was
meaningful to think about either repetitively resampling a finite subset from a
large population, or repetitively conducting an experiment in order to conceive
of how a parameter might be expected to vary simply due to random error.

Bayesian inference refers to an alternate philosophical and statistical approach
to the analysis and inference of observed data. Instead of assuming there is a
frequency of how often something should happen (e.g. in the abstract empirical
thought experiment), Bayesian inference combines the mental models.

Bayesian’s articulate a statement about the plausible distribution of a parameter
given past experience or knowledge (e.g. the prior), and then combine it directly
with what the data actually suggest. The result of this combination is an
updated statement about the distribution of the parameter (e.g. the posterior).

A common critique of Bayesian inference is that priors introduce subjective in-
formation as compared to the objective assumptions of frequentist inference.
Instead, Bayesian priors are simply explicit and transparent about the assump-
tions being made; this is in contrast to the unrealistic or unstated assumptions
required for frequentist inference.

In the cartoon above there is a truth about the universe (e.g. the sun exploded:
true or false) that is measured by the neurino detector. The measurement almost
always reports the truth of it’s measurement, but when it rolls a double-six on
dice, it lies to you. The measure occurs, the dice are rolled and the answer is
“the sun exploded”.

The frequentist statistician on the left, finds that because the probability of
telling a lie is so small, and given the answer was “the sun exploded”, then the
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Figure 6.1: Frequentist vs. Bayesian Inference
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sun must have exploded (e.g. the null is rejected). The Bayesian statistician on
the right is more skeptical.

This is an exaggerated example of the role of prior belief. In a strictly frequentist
interpretation, all that matters is the probability of the observed data under the
hypothetical range of possibilities under the stated null.

Obviously this is a silly cartoon. There is an interesting discussion
of why the joke might also be based on an incorrect interpretation
of frequentist statistics at this link.
One nuance that is brushed aside by the over simplified cartoon
is that in frequentist terms, this is a joint hypothesis. Instead
of the implied single hypothesis, “what is the probability the sun
exploded?”, which is illustrated is the dual hypothesis, “what is the
probability the sun exploded AND the neurino detector told a lie?”.
So there is a clear way to make the logical flaw in thinking that is
illustrated fit well in a frequentist as well as Bayesian framework.

6.2.2 Bayesian inference in spatial epidemiology

While Bayesian statistics are widely incorporated into statistical methods across
disciplines, Disease Mapping is perhaps the most ubiquitous use of Bayesian
inference in epidemiology. Aside from the appealing flexibility of Bayesian in-
ference generally, there are two specific reasons Bayesian inference makes sense
for disease mapping:

1. Borrowing statistical strength from spatial (and even spatio-temporal)
neighbors, is an efficient way to improve the reliability and precision of
small area disease rate estimates. You have already seen this with spatial
Empirical Bayes estimation, and in a different way with Kernel Density
Estimation. Leveraging the notion that near things tend to be more alike
than far thing, the incorporation of spatial neighbors as a source of prior
information can reduce variance of estimates, and smooth or shrink im-
plausible and extreme values.

2. Modeling spatial auto correlation explicitly is important because our statis-
tics conventionally rely on assumptions of independence among observa-
tions. Therefore, if the disease rates in two adjacent counties are correlated
because of shared environment, demographic structure, or interaction, this
dependence can result in biased parameter estimates. Empirical Bayes
smoothing did not explicitly address this, but fully Bayesian models with
spatial priors can explicitly model the auto correlation, thus allowing es-
timation of the likelihood under assumptions of conditional independence.

https://statmodeling.stat.columbia.edu/2012/11/10/16808/
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Bayesian statistics are not inherently any more complex than frequentists statis-
tics. However, you have likely had substantially more opportunity to assimilate
ideas in frequentist thinking, and thus Bayesian statistics may feel quite for-
eign. There are two concepts that we will incorporate into disease mapping in
a Bayesian framework: hierarchical models and the (conditional autoregressive
(CAR)) prior.

6.2.2.1 Bayesian hierarchical models

Bayesian models are hierarchical in the sense that we conceive of parameters not
as discrete point estimates, but instead as a range of plausible values described
by a probability distribution function (PDF). Thus the target distribution of
parameters might be a lower-level of the hierarchy, while the parameters of a
given PDF (e.g. the mean or variance), are themselves assumed to arise from a
random probability distribution, representing another hierarchical level.

Thus, to describe the probability of random variables at the lowest level
(e.g. perhaps the excess relative risk of disease in 𝑟𝑒𝑔𝑖𝑜𝑛𝑖 as compared to
expected), we need to specify a “second level”, and then possibly a third level
in a hierarchical fashion.

Take for example our interest in disease mapping in characterizing spatial het-
erogeneity, and specifically the value of the region-specific excess relative risk
as an indicator of deviation from expectation.

In previous settings we have notated the likelihood of the excess relative risk
as 𝜃𝑖; here we will examine 𝜃𝑖 on the log scale, defining a related parameter 𝜓
(spelled psi and pronounced like sigh): 𝜓𝑖 = 𝑙𝑜𝑔(𝜃𝑖). Therefore the following
two statements about our observed data, 𝑌𝑖 and our probability model say the
same thing:

𝑌𝑖|𝛽, 𝜓𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖𝑒𝑥𝑝(𝑥𝑖𝛽 + 𝜓𝑖))
𝑌𝑖|𝜃𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖𝜃𝑖)

The only difference in those two likelihood statements is that:

• a) the first is on the log scale whereas the second is not;

• b) the first explicitly incorporates possible covariates with resulting pa-
rameters, 𝛽.

Importantly, each time we use one of those Greek letters, we are saying it repre-
sents a random variable. Therefore, in a Bayesian framework, we must specify
the distribution and parameters of each random variable. These distributional
specifications are the prior!
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They differ from the prior in Empirical Bayes because we specify them as full
probability distributions, rather than as discrete values calculated from the ob-
served (empirical) data. This is where the model becomes hierarchical. In the
first equation above there are two random variables: 𝛽𝑖 and 𝜓𝑖. Each requires
a specification of a prior.

𝛽 ∼ 𝑁(0, 100000)
In this particular example, I have specified the prior on the 𝛽 (e.g. the prior
for the range of plausible coefficients for any possible included covariates in our
model, such as rural/urban or population density) to be relatively uninforma-
tive.

In other words, by saying that 𝛽 arises from a normal distribution with mean of
zero (e.g. on average I expect there is no association) and a variance of 100,000,
I am saying that there is very little specific prior information; therefore the data
(e.g. the likelihood) will win out in all cases. This is a common practice for fixed
effects (e.g. global summary or stationary parameters that are not assumed to
vary over space), and is quite similar to the frequentist assumption that anything
is possible.

However, the strategy for the prior on 𝜓𝑖 is a little different. Recall, when
discussing global and local (aspatial and spatial) Empirical Bayes, that the chief
distinction was in the specification of the prior: in global/aspatial there was a
single prior expectation for the entire study region, whereas for local/spatial EB,
there was a unique prior for each region, defined in part by values in neighboring
regions.

A similar approach could be taken in fully Bayesian disease modeling. One
approach would be to define a single prior that applies to each region, irrespec-
tive of their spatial relatedness to one another. This is often called a spatially
unstructured random effect. In other words it is a random variable that is not
defined by spatial connectivity, but instead arises from some non-spatial phe-
nomenon. Instead of being uninformative, we will incorporate prior knowledge
in the form of information about the plausible range of values across the study
region.

𝜓𝑖 ∼ 𝑁(0, 𝜎2)

This says that the range of possible values of 𝜓 arise from a normal distribution,
centered on zero (e.g. on expectation each region is exactly as expected), with
a variance 𝜎2.

As mentioned above, in the Empirical Bayes, the value of this variance term
(e.g. the specification of how different we think regions can plausibly be from
one another) was specified using the empirical or observed data. However, in
the hierarchical Bayesian setting, we can go yet another level and say that even
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𝜎2 is a random variable with a prior of its own. For example a common prior
for a variance term (a prior for a prior is called a hyperprior!) is:

𝜎2 ∼ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝑔𝑎𝑚𝑚𝑎(1, 0.01)
The inverse gamma distribution is specified by two parameters, 𝛼 and 𝛽. The-
oretically we could specify yet another hyper prior for these two parameters,
but in this example –and following convention–I specify numeric values of 1 and
0.01. Here is an example of what this prior distribution looks like (recall 𝜎2

describes variance on the log scale):

0.00 0.25 0.50 0.75 1.00 1.25

σ2

IG(1, 0.01)

This summary of hierarchical Bayesian models has not explicitly incorporated
spatial relatededness and neighbors. The next section introduces a spatial prior.

6.2.2.2 Conditional auto-regressive priors

As mentioned in the previous section, just as there were both global and local
priors for Empirical Bayes, so there are for fully Bayesian disease mapping. The
global prior for 𝜓𝑖 was described above as arising from a common or shared
normal distribution for all regions.
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This helps address the concern for instability of estimates due to sparse data
in a single region, by shrinking or smoothing local regions towards a global dis-
tribution. However, this strategy does not address the the ubiquitous presence
of spatial-dependence. In other words the global strategy neither addresses the
violation of assumption of independence among regions (e.g. they are often ac-
tually quite dependent or auto-correlated!), nor does it take advantage of that
fact to provide stronger priors.
The Conditional Auto Regressive (CAR) model is commonly used in both fre-
quentist and Bayesian spatial statistics. In particular, it informs the estimation
of each local log-relative risk parameter, 𝜓𝑖 by conditioning on information in
the neighbors. The CAR model is a setup in which data are assumed to be
distributed normally (e.g. Gaussian), with the mean and variance defined con-
ditional on neighbors. In the fully Bayesian framework, we can use this CAR
conditioning to parameterize (e.g. as a prior for) the values of local 𝜓𝑖.
The CAR model is incorporated into multiple different types of Bayesian priors
in disease mapping. The basic setup for the CAR model is described here:

𝜓𝑖|𝜓𝑗≠𝑖 ∼ 𝑁 (
∑𝑗≠𝑖 𝑤𝑖𝑗𝜓𝑖
∑𝑗≠𝑖 𝑤𝑖𝑗

, 1
𝜏𝐶𝐴𝑅 ∑𝑗≠𝑖 𝑤𝑖𝑗

)

This says that the values of 𝜓𝑖 (e.g. the local log-relative excess risk) are normally
distributed, conditional on the values of 𝜓𝑖 in neighbors of 𝑖. The mean of the
region-specific normal distribution is a weighted average of the values of 𝜓𝑖
for all neighbors, and the variance of the distribution is informed by 𝜏𝐶𝐴𝑅, a
hyperprior denoting the conditional variance among the neighbors. The term
𝑤𝑖𝑗 is a binary spatial weights matrix created much as did for spatial Empirical
Bayes by identifying neighboring or adjacent units 𝑖 and 𝑗 as 𝑤𝑖𝑗 = 1 and all
non-adjacent or non-neighbor pairs 𝑖 and 𝑗 as 𝑤𝑖𝑗 = 0
A very commonly used spatial prior in Bayesian disease mapping is called the
Besag-Yorke-Mollie or BYM prior. It combines the spatially-explicit CAR prior
above to characterize the parts of spatial heterogeneity that are spatially struc-
tured (e.g. related to spatial dependence in the data), along with the global or
spatially unstructured Gaussian prior described in the previous section.
The idea is that some sources of variation between regions are in fact spa-
tially dependent (e.g. through diffusion, selection of similar populations, com-
mon exposure, etc), whereas other sources of difference are not spatially depen-
dent (e.g. could be abrupt changes between rural-suburban-urban, or might be
region-specific exposures that are not shared with neighbors). This combination
of types of prior are sometimes called convolution priors because they combine
two separate random effects together.
We can describe the fully hierarchical Bayesian BYM model like this:

𝑌𝑖|𝛽, 𝜓𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖, 𝑒𝑥𝑝(𝛽, 𝜓𝑖))
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Because we are now specifying that the local values of 𝜓𝑖 are contributed to
by two distinct random components (e.g. one spatially structured and one un-
structured), we can define 𝑝𝑠𝑖𝑖 as the sum of two parts: 𝜓𝑖 = 𝑢𝑖 + 𝑣𝑖, where 𝑢𝑖
is the spatially structured random variable and 𝑣𝑖 is the unstructured random
variable. Each of these therefore needs a prior:

𝑢𝑖|𝑢𝑗≠𝑖 ∼ 𝑁 (
∑𝑗≠𝑖 𝑤𝑖𝑗𝑢𝑖
∑𝑗≠𝑖 𝑤𝑖𝑗

, 1
𝜏𝐶𝐴𝑅 ∑𝑗≠𝑖 𝑤𝑖𝑗

)

𝑣𝑖 ∼ 𝑁(0, 𝜎2)

Finally, we need to specify hyperpriors for the two variance terms, 𝜏𝐶𝐴𝑅, and
𝜎2; these can be defined in a relatively non-informative manner using Gamma
or Inverse Gamma distributions to allow for a wide range of possibilities.
Other specification of the Bayesian disease mapping priors using the CAR model
can be seen in the additional resources cited at the beginning of this section.

Somewhat confusingly, the CARBayes package described below
uses slightly different Greek letter nomenclature. Specifically, the
package authors use 𝜓 to indicate the spatially-correlated or struc-
ture random effects, but describes the set of random effects (e.g. as
in a convolution model where there are both spatially structured
and unstructured random effects)–of which 𝜓 is one component–
with the Greek letter 𝜙 (spelled phi and pronounced like figh).
In some other models in the CARBayes package, there are both
spatially-correlated and spatially unstructured random effects, but
in the Leroux, 𝜓𝑖 = 𝜙𝑖. I point this out because the model output
will have a matrix named phi, which might seem confusing if we
were calling that thing psi (𝜓).

6.2.2.3 Making inference from Bayesian Models

While the basic logic of Bayesian inference is relatively straightforward, as you
can see the Bayesian hierarchical framework looks complex! In very simple
settings it is possible to calculate the full posterior distribution (e.g. the com-
bination of the likelihood and the prior via Bayes Theorem) using closed form
strategies.
However it is common that no closed-form solution exists for these more com-
plex, hierarchical and conditional models. Therefore, there are currently two
analytic strategies used to make inference when a simple formula doesn’t work.

1. Markov Chain Monte Carlo (MCMC) simulation has been used for
decades in Bayesian analysis. This ‘brute force’ method takes advantage
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of two statistical tools to make inference about the shape of the posterior
distribution of even very complex Bayesian models.

• Markov Chain is an algorithm for drawing from (possibly highly dimen-
sional) parameter space. It uses stochasticity (randomness) to ‘check’
different possible parts of the parameter space, using only a comparison
of how well the current location fits as compared to the previous. As a
result the algorithm can ‘learn’ without getting stuck in one location. The
goal is to eventually (through random sampling plus learning) settle on
the most likely answer or parameter value.

• Monte Carlo simulations are a repetitive sampling or drawing from the
posterior. While we cannot describe exactly the shape of the posterior
distribution, if we take a very large number of samples from that distribu-
tion (e.g. from the Markov Chain) we can create a summary of the shape
of the posterior. So for instance, the mean or median of a large number of
samples becomes our parameter point estimate, and the 2.5𝑡ℎ and 97.5𝑡ℎ

percentiles of the samples become Bayesian Credible Intervals.

2. Integrated Nested Laplace Approximation (INLA). This is a much
newer strategy that aims to provide a more efficient way to approximate
the shape and scale of the posterior. INLA works in R and is especially
well suited to complex hierarchical, spatial, and spatio-temporal models
of areal or point data.

6.3 Spatial Analysis in Epidemiology

Bayesian analysis requires a bit more care and caution on the part of the analyst.
I strongly recommend proceeding on any project with great caution (and ideally
with an expert consultant!). However, there are some tools which have made
Bayesian modeling more accessible, in part by pre-programming some ‘sensible’
defaults into functions.
In this module, we only discuss the MCMC methods as implemented in a single
package, CARBayes, because this package represents a reasonable point-of-entry
for those interested in starting down the Bayesian path. However there are
excellent tutorial resources for learning INLA, and many other Bayesian tools
as well.
The CARBayes package has functions for fitting a wide range of spatial disease
mapping models including:

• Besag-York-Mollie (BYM) described above, in which spatial heterogene-
ity is modeled as the sum of two random processes: a spatially structured
process with a spatial CAR prior; and a spatially independent or unstruc-
tured process
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• Leroux CAR model is an extension of CAR where there is a single random
effect (e.g. not two as in BYM), but there is a variable degree of spatial
autocorrelation parameterized with a random hyperprior, 𝜌 that describes
how some places might have more versus less spatial dependence.

• Dissimilarity model uses a CAR prior to identify boundaries where risk or
rate abruptly changes. This model therefore highlights distinct differences
amongst neighbors as opposed to encouraging similarity; as such it can be
useful for identifying spatial clustering.

• Localised CAR model is another extension similar to the dissimilarity
model that aims to identify abrupt changes in the surface and highlight
clusters.

• Multilevel CAR models are a nice alternative when you have access to
individual level outcomes nested within areal (ecologic) units, as opposed
to only relying on counts aggregated to those units.

• Multivariate Leroux model is distinct from all of the preceding models
which are univariate, meaning there is a single ‘outcome’ for each unit of
observation. In multivariate analysis (which is distinct from the more com-
mon multivariable analysis such as multiple regression), there are multiple
correlated outcomes for each unit of analysis. One example is modeling
the incidence of three kinds of cancer simultaneously.

Each of these models can be fit with Poisson, Binomial, Normal (Gaussian), or
Multinomial distributed data.

The CARBayes package vignette provides additional detail on the specification of
these different models, and examples of fitting each using the built-in functions.
In addition, there is a sister package, CARBayesST that has extensions for spatio-
temporal data, where the same regions are observed not once but multiple times.
More information about this package is available in the CARBayesST vignette

The example below uses the commonly implemented Besag-York-Mollie (BYM)
model.

6.3.1 Packages & Data

In addition to the now-familiar packages, you will also need to load the CARBayes
package.

library(sf) # sf provides st_read for importing
library(spdep) # spdep has functions for creating spatial neighbor objects
library(tmap) # tmap for plotting results
library(dplyr) # dplyr for pipe processing of data
library(CARBayes) # CARBayes has functions for fitting a range of CAR models

https://cran.r-project.org/web/packages/CARBayes/vignettes/CARBayes.pdf
https://cran.r-project.org/web/packages/CARBayesST/vignettes/CARBayesST.pdf
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This example will continue to use the very low birthweight data used in previous
parts of the eBook. The following code reads it in as sf and calculates a raw
rate of VLBW to use for subsequent comparisons.

vlbw <- st_read('ga-vlbw.gpkg') %>%
mutate(rate = VLBW / TOT )

r <- sum(vlbw$VLBW) / sum(vlbw$TOT)
vlbw$expected <- r*vlbw$TOT

6.3.2 Preparing for CARBayes()

In addition to the usual preparation of an analytic data set, the primary concern
before fitting the Bayesian CAR model is creation of the weights matrix, W, that
serves to identify the set of neighbors each county has to serve as inputs for
describing the shape of the prior probability distribution. We can use all of the
same tools from previous weeks for creating a range of neighbor objects, with
the following caveats:

1. Neighbors (and weights) must be symmetric, which means that if 𝑟𝑒𝑔𝑖𝑜𝑛𝑖
is a neighbor to 𝑟𝑒𝑔𝑖𝑜𝑛𝑗, then 𝑟𝑒𝑔𝑖𝑜𝑛𝑗 is also a neighbor to 𝑟𝑒𝑔𝑖𝑜𝑛𝑖. Con-
tiguity and graph-based neighbor objects are symmetric by design, but k-
nearest neighbors are often asymmetric. Thus, if you created a k-nearest
neighbors object you may need to force symmetry by using the function
make.sym.nb().

2. All regions must have at least one neighbor. More formally, the sum of
all rows in the weights matrix must be at least 1. If the neighbor approach
results in unlinked regions (areas with zero neighbors, as could be the case
with islands), they need to be excluded, or an alternate or adapted weights
matrix created.

3. The object we will use in the CARBayes function below must be a literal
weights matrix (e.g. 159 × 159) and not just the nb object.

Below I create a simple Queen contiguity neighbor object, and then convert
that object to a weights matrix. The use of style = 'B' in the creation of the
weights matrix says that the values in the resulting matrix should be binary (0
or 1). The default (style = 'W') results in row-standardized weights, which are
useful for other analytic tasks, but not necessary in the CAR models, because
the CAR prior inherently adjusts for the number of neighbors.

qnb <- poly2nb(vlbw)
qnb_mat <- nb2mat(qnb, style = 'B')
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dim(qnb_mat) # confirming the dimensions of the matrix

## [1] 159 159

class(qnb_mat) # confirming its class

## [1] "matrix" "array"

Make sure your weights match your final data!
It is always important that your spatial neighbors or weights ob-
jects are made from your final dataset! Any changes (additions or
deletion of rows, but also any re-sorting or rearranging) will result
in misalignment between the spatial weights matrix and the data.

6.3.2.1 How many Monte Carlo Samples are needed?

This depends on how complex the model is, and how strong the signal in the
data is. But in general a few concepts are worth mentioning.

1. First, there is a tendency for the (randomly selected) starting location
of a Markov Chain to influence the early samples. For this reason it is
common to plan to discard a portion of the samples during a burn-in
period. This essentially means that we hope there is no dependence on
initial conditions after removing the first 𝑛 samples. This burn-in can be
quite large, e.g. tens of thousands of samples!

2. Our goal is that model convergence is achieved, meaning that the Markov
Chain has ‘learned’ enough to settle down into a relatively consistent area
in the parameter space. This can take many thousands of samples, and
thus convergence diagnostics are often used to guide decisions about how
many samples are required.

3. At the end of the day, we only need about 𝑛 = 1000 reliable and high
quality samples from the posterior to accurately describe it. But it may
take 10, 000, 50, 000 or even 100, 000 or more samples to achieve the pre-
ceding goals of burn-in and convergence. One option would be to just
keep the last 1, 000 samples. But a preferable option is to use thinning to
sample every 10𝑡ℎ or every 100𝑡ℎ sample, after the burn-in period. This
achives two goals: it requires less memory to store all of the samples, but
it also reduces any residual auto-correlation among sequential samples.
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6.3.3 Fitting a Besag-York-Mollie (BYM) Bayesian
model

Before fitting the model, it is convenient (but not required) to specify the fixed-
effect component of the model. This is where you specify the outcome and
the predictors. CAR Bayesian models can incorporate covariates as categorical,
continuous, or even non-linear (e.g. spline or polynomials) in the likelihood.
There are two reasons you might choose to include covariates:

1. Covariates that are strongly predictive of the outcome will improve the
prediction of local fitted rates. One interpretation of the random effects
(e.g. 𝜓𝑖), is that they represent unmeasured causes or correlates of the out-
come. Addition of relevant covariates could explain some of the previously-
unmeasured factors.

2. A second reason is that there may be interest in describing geographic
trends in disease conditional on a covariate. The example we have used
previously is local age structure, although other covariates might be a
nuisance in interpreting geographic patterns of disease.

For now, we do not have any covariates, so the only thing in the fixed-effect
portion of the model is specification of the outcome variable (count of deaths)
and the offset variable (log of denominator at risk for death), which is necessary
for the Poisson model of counts from regions with different populations at risk.
Note that all we are creating here is a formula object. It is not doing anything
other than naming our formula.

mod <- VLBW ~ offset(log(TOT))

Now we have the three main ingredients:

1. Data, in the form of the vlbw object
2. The spatial weights matrix, W, which represents the spatial relationships

(qnb_mat)
3. The fixed effects portion of the model.

To call the BYM model we specify:

bym <- S.CARbym(formula = mod,
family = 'poisson',
data = vlbw,
W = qnb_mat,
burnin = 30000,
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n.sample = 60000,
thin = 30,
verbose = FALSE)

Poisson or Poisson-Gamma?
Notice that the family = 'poisson', even though in previous
work we observed that there may be extra-Poisson variation in
these data. That led us to prefer a Poisson-Gamma probability
model (or a negative binomial); so why not choose that here?
In part because in the fully Bayesian CAR model we actually are
allowing for extra-Poisson variation with the conditional prior,
which itself has a Gamma prior on the variance.

The formula, family, data, and W have been discussed. But the next three
arguments require some explanation.

• burnin = 30000 specifies how many of the MCMC samples should be
discarded. In general, discarding a large number in the beginning via the
burnin argument is recommended to reduce sensitivity to initial condi-
tions and ignore the time spent early in the Markov Chain process.

• n.sample = 60000 specifies the total number of samples to draw. Obvi-
ously this number must be larger than the burnin or else there will be
nothing left to look at! In this case we take 60,000 samples, discarding
the first 30,000, leaving 30,000 for examination.

• thin = 30 says to only keep every 30th sample drawn. The reasons for
thinning are to reduce auto correlation among consecutive values, and to
save memory, by only keeping a useful number of samples to describe the
posterior. We are keeping 1000 samples, which is adequate for summariz-
ing the parameters of interest.

There are actually many more options the analyst can choose for specifying
the BYM model. For instance, I mentioned that an appealing feature of the
CARBayes package is that it has built-in a number of sensible defaults for models,
so that the analyst doesn’t have to make so many decisions.

However, those defaults can be changed. For example, the inverse gamma prior
on the variance, 𝜏2, has default settings, but these can be modified with addi-
tional arguments. While you might not be able to digest them all now, it might
be useful to look briefly at the help documentation for S.CARbym.
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6.3.4 Summarizing CARBayes model output

The summary() function returns a list of the objects returned, but nothing more
useful. The print() function provides a subset of model summary statistics.

summary(bym)
print(bym)

##
## #################
## #### Model fitted
## #################
## Likelihood model - Poisson (log link function)
## Random effects model - BYM CAR
## Regression equation - VLBW ~ offset(log(TOT))
##
##
## #################
## #### MCMC details
## #################
## Total number of post burnin and thinned MCMC samples generated -
## Number of MCMC chains used -
## Length of the burnin period used for each chain -
## Amount of thinning used -
##
## ############
## #### Results
## ############
## Posterior quantities and DIC
##
## Mean 2.5% 97.5% n.effective Geweke.diag
## (Intercept) -3.9948 -4.0494 -3.9491 1000.0 0.1
## tau2 0.1112 0.0459 0.2041 491.0 -0.6
## sigma2 0.0101 0.0021 0.0292 131.5 0.6
##
## DIC = 889.8585 p.d = 54.5389 LMPL = -459.42

Only a few of the total parameters estimated are summarized here. Specifically
the print() function will display all of the fixed-effects (only the global intercept
is included here because we did not specify any covariates), as well as the hyper
priors, 𝜏2 and 𝜎2.

• The parameter 𝜏2 characterizes the conditional variance of the spatially
structured random effects (e.g. 𝑢𝑖 in the BYM convolution prior).
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• The parameter 𝜎2 characterizes the variance of the unstructured or global
random effects.

It is clear there is more variability in the 𝜏2 than in the 𝜎2 suggesting that of
the total variability in county-specific prevalence of VLBW, more of it seems to
be attributable to spatially-structured processes as compared to unstructured
processes.

A note of caution
Although it is appealing to interpret the two variance components
in the BYM model as I just did (e.g. describing the proportion-
ate contribution to total variation), it is also known that in BYM
models in particular, these two cannot be clearly identified inde-
pendent of one another. In other words together they can describe
variation, but it is not safe to make inference on either separate
from the other.
Instead we can be more confident that the sum of the two is a
reliable prior.

Also evident in the results of the print(bym) results is that each of these hyper
parameters, and the fixed-effects, are summarized as the median value from the
posterior samples (e.g. n=1,000 retained posterior samples in our case), as well
as the 2.5𝑡ℎ and 97.5𝑡ℎ percentiles of the posterior (e.g. the Bayesian Credible
Intervals).

The Deviation Information Criteria (DIC) is a Bayesian model fit statistic, and
like other fit statistics, smaller is better.

Finally, the Geweke Diagnostic test is designed to characterize how well the
Markov Chain has converged on a stationary location in parameter space. The
assumption with Markov Chain, is that the steps in the chain will move towards
the optimum (best fitting) values, and once there will remain in that area. Thus
the Geweke compares the mean value of the sampled posterior at the end of the
samples, and at some earlier point.

If the model has converged, the two means will be similar. The resulting test
statistic is a standard Z-score. Values between -1.96 and 1.96 are suggestive of
good convergence, whereas values greater than 1.96, or less than -1.96, may not
be converged.

In the above model with 60,000 total samples (and 30,000 burn-in), the Geweke
diagnostic suggests good convergence for the intercept but perhaps poor con-
vergence for the two variance hyperpriors. The model could be re-fit with more
iterations to see if that improves convergence. Other approaches include better
model-specification (e.g. perhaps important variables are missing, making the
model non-identifiable).



164CHAPTER 6. DISEASE MAPPING III: INTRODUCTION TO FULLY BAYESIAN MAPPING

6.3.5 Making inference from Bayesian posteriors

The output of the S.CARbym() model function is complex. If you use summary()
or names() on the output object, you will see there are several components.
The one called samples contains the posterior draws from the MCMC process.
Within that object are several data matrices, each containing the posterior
samples for different parameters. You can understand a little bit about them
by looking at their shape or dimension with dim().

names(bym) # what is inside the model output object?

## [1] "summary.results" "samples" "fitted.values"
## [4] "residuals" "modelfit" "accept"
## [7] "localised.structure" "formula" "model"
## [10] "X"

names(bym$samples) # what is inside the 'samples' sub-object?

## [1] "beta" "psi" "tau2" "sigma2" "fitted" "Y"

dim(bym$samples$beta) # 1000 draws for 1 beta fixed effect (the intercept)

## [1] 1000 1

dim(bym$samples$psi) # 1000 draws for the psi = ui + vi for each of 159 counties

## [1] 1000 159

One of the matrices inside the bym object is named fitted.values. This could
be of interest if, instead of characterizing the heterogeneity in 𝜓𝑖 (e.g. the log-
relative risk), you wish to map the model-fitted rates.

Fitted values are on the scale of the observed data. That means that in the case
of a Poisson model, the fitted values are counts of VLBW as predicted by the
model. As we will see below, these counts divided by the known denominator
(total birth count) will produce a model-predicted risk or prevalence.

However, if we want to know more about the posterior of specific random vari-
ables, such as 𝛽 we should look at bym$samples$beta; if we want to know about
the random effects 𝜓𝑖, we should look at bym$samples$psi.
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One thing you might like to do is examine the Markov Chain trace plot to
understand how it sampled the parameter space through sequential steps. This
is useful as an indicator of convergence (e.g. if the trace plot has settled into a
common range, it has likely converged, whereas if it wanders all over the place,
it has not).

Another visualization that can be useful is to see the shape of the sampled
posterior probability distribution. The package coda is designed specifically for
working with MCMC samples from Bayesian models of all kinds, and has some
functions for creating these plots. Below are two functions for visualizing the
posterior estimates of the global intercept, 𝛽.

coda::traceplot(bym$samples$beta)
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On the y-axis is the sampled values from the posterior distribution for 𝛽, and
the x-axis is each of the 1,000 samples we retained (e.g. 60,000 draws - 30,000
burnin, with thinning). Notice how the traceplot() shows the Markov Chain
moving around to test different values. While there is a lot of variation, the
bulk of the samples are are centered in a relatively narrow range, from −4.02
to −3.96, suggesting good convergence.
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Also notice how the chain has ‘leaps’ or forays away from the central area of
parameter space or values. That is another feature of Markov Chain: it will
randomly evaluate other parts of the parameter space to see if they might fit
better than the current. The fact that the plot always returns quickly to the
same place suggests a rejection of the alternate values.

coda::densplot(bym$samples$beta)
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In the densplot(), we can see the shape of the sampled posterior, indicative of
the probability density for 𝛽. For instance, it is clear that most of the probability
mass is over the median value around -4.0, but that there is some probability
mass lower, and higher; in other words there is some variation in our certainty
about the true posterior spatial auto correlation value.
Recall that the 𝛽 represents the average log-risk of VLBW in Georgia. So to
make these numbers more interpretable, exponentiate to get 𝑒−4.0 = 0.018. The
‘average’ risk of VLBW is therefore 1.8%, and counties vary around (e.g. above
and below) that value.
The preceding illustrations of how to examine the data and plot specific pa-
rameters could be extended well beyond the 𝛽 intercept alone! Any number of
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parameters could be evaluated, but remember there are 𝑛 = 159 different values
for 𝜓𝑖.

6.3.6 Extracting summaries for mapping or analysis

Finally, you want to extract summaries of these data for the purposes of ana-
lyzing or visualizing. The presence of 1000 samples from the posterior for every
single parameter, makes working with the data cumbersome. Luckily there are
some extractor functions that can help.

The fitted values are in a separate matrix within samples, and contain the
model-predicted value of ̂𝑌𝑖 for each county. These can be useful for calculating
a model-smoothed rate or risk.

y_fitted <- fitted(bym)
vlbw$rate_bym <- y_fitted / vlbw$TOT

The random effects, 𝜓𝑖, are interpreted as the log-relative risk for each
county. In other words they quantify the degree to which each county departs
from the overall average (or more specifically from the global intercept,
which in this case is captured in the beta matrix within bym$samples as in
head(bym$samples$beta)).

We might wish to summarize the posterior of each county’s log-relative risk by
taking the median of samples for 𝜓𝑖 (or summarise the posterior of any modeled
parameter, for that matter!).

First, it is worth noting the data class of each of the objects containing the
bym$samples$psi:

class(bym$samples$psi)

## [1] "mcmc"

The mcmc data class is defined in the coda package, which is a toolbox of func-
tions specific to manipulating and summarizing MCMC data objects. So the
bym$samples$psi object is basically a Monte Carlo Markov Chain posterior
summarization of a single parameter from a model. If you have loaded the
package coda, then you will be able to use the summary() function on an object
of class mcmc with success:



168CHAPTER 6. DISEASE MAPPING III: INTRODUCTION TO FULLY BAYESIAN MAPPING

# Load coda package
library(coda)

# Extract the median (50th percentile) and 95% credible interval of posterior of psi
psi <- summary(bym$samples$psi, quantiles = c(0.5, 0.025, 0.975))$quantiles

# Exponentiate the estimates to put them on RR scale
vlbw$RR_bym <- exp(psi[,1]) # RR
vlbw$RR_lci <- exp(psi[,2]) # Lower 95% credible interval
vlbw$RR_uci <- exp(psi[,3]) # Upper 95% credible interval

6.3.7 Plot raw versus smoothed

You might be interested to see how different the Bayesian values are from the
raw or observed values. We can use base-R to plot this.

plot(vlbw$rate, vlbw$rate_bym)
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Just as we saw with Empirical Bayes, the Bayesian smoothed rates are smoothed
towards the mean as compared with the raw values.

6.3.8 Mapping rates

Because we have added the modeled parameters to our vlbw spatial object, they
are ready to map.

tm_shape(vlbw) +
tm_fill(c('rate', 'rate_bym'),

style = 'quantile',
palette = 'BuPu',
title = c('Observed rate', 'CAR smoothed')) +

tm_borders() +
tm_layout(legend.position = c('RIGHT', 'TOP'))

Observed rate
0.000 to 0.012
0.012 to 0.016
0.016 to 0.020
0.020 to 0.025
0.025 to 0.055

CAR smoothed
0.010 to 0.015
0.015 to 0.018
0.018 to 0.020
0.020 to 0.023
0.023 to 0.030

Again, this map appears similar to the spatial Empirical Bayes procedure from
Disease Mapping II. That makes sense because both are Bayesian and both use
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the same definition of spatial neighbors. The value-added for fully Bayesian
modeling as compared with spatial Empirical Bayes smoothing include:

• CAR-prior Bayesian smoothing borrows strength from neighbors (like spa-
tial EB), but also models local spatial auto correlation.

• Bayesian modeling readily accommodates covariates into the regression,
unlike the Empirical Bayes procedure from last week.

• Sampling from the Bayesian posterior permits inference including use of
95% credible intervals and exceedance probabilities which was not possible
with spatial EB.

6.3.9 Mapping exceedance probability

We have mentioned many times how challenging it can be to visualize both the
parameter estimate, but also a measure of its precision, variance, or reliability.
The nature of Bayesian inference lends itself well to characterizing the proba-
bility that the posterior is or is not consistent with some threshold. Because
we can directly interpret the posterior as samples from a probability distribu-
tion, we only need to look at how many of the MCMC samples exceeded a given
threshold in order to make inference about how confident we are in an estimate.

For example the random effect parameters, 𝜓𝑖 represent the deviation of 𝑟𝑒𝑔𝑖𝑜𝑛𝑖
from the overall mean rate value estimated by the global intercept. In other
words the random effects are centered at 0 (a county with 𝜓𝑖 = 0 is a county
with the rate = intercept value).

When exponentiated, we say that the relative risk is centered at the null value of
1. So if we mapped the relative risk (like the SMR), we’re interested in counties
that are different from 1, or the expected value in the state.

To calculate the probability that each county is greater than (or less than)
0 on the log scale (or 1 on the RR scale), we simply look at the proportion
of samples from the posterior that exceed the value. This proportion is the
exceedence probability. Then we might summarize which counties had a very
high probability of being greater than the threshold (e.g. 0).

Similarly, we can look at counties which had a very low probability of exceeding
zero. What this means is that few of the samples were above zero. These
are suggestive of sub-zero deviation. In this way the exceedance probability
quantifies both exceedingly high and exceedingly low counties.

To calculate exceedence probabilities, we once again use the function summary(),
but this time we will focus on the specific threshold of interest. Because we are
looking at the random effects, 𝜓𝑖, we know that a meaningfully different value
is one that is not equal to zero (the threshold would be different for different
parameters, e.g. 𝜎2).
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We can use the quantiles returned from summary() in the code above. We
selected the 2.5𝑡ℎ and 97.5𝑡ℎ percentile of the posterior. If we compared the
actual value of those percentiles to the null we could divide estimates into those
that “exceed the null with 95% probability” from those that do not.

# Create a 1, 0 variable in vlbw indicating P<0.025 or P>0.975
vlbw$rr_95 <- ifelse(vlbw$RR_lci > 1, 'High',

ifelse(vlbw$RR_uci < 1, 'Low', NA))

The new variable vlbw_95 is a three-level indicator reflecting whether counties
have significantly lower risk than average (e.g. their upper credible interval
smaller than the null of 1), significantly higher risk than average (e.g. their
lower credible interval is larger than the null of 1), or whether the posterior
estimate for that county is consistent with the state average (e.g. there is a
decent probability that the estimate of 𝑝𝑠𝑖𝑖 is not actually different from the
state expectation).

It is worth noting here that Bayesian’s typically do not talk about significance
in the same way as frequentist’s. We are inherently estimating posterior dis-
tributions, rather than testing discrete null hypotheses. However, for ease, I
have used the word significance to describe the posteriors which have their 95%
credible interval excluding the zero value.

There are several ways we could incorporate this new information into a map,
but below are two simple versions. In this first, I layer three shapes on top of
one another; the first has the county values, the second is only the borders for
the counties that are lower than average, and the third is only the borders for
counties that are higher than average.

tm_shape(vlbw) +
tm_fill('RR_bym',

style = 'fixed',
palette = 'PRGn',
breaks = c(0.13, 0.67, 0.9, 1.1, 1.4, 2.3),
title = 'Relative Risk') +

tm_borders() +
tm_shape(subset(vlbw, rr_95 == 'Low')) +
tm_borders(col = 'purple', lwd = 2) +

tm_shape(subset(vlbw, rr_95 == 'High')) +
tm_borders(col = 'green', lwd = 2) +
tm_add_legend(type = 'line',

labels = c('Low risk county', 'High risk county'),
col = c('purple','green')) +

tm_layout(legend.position = c('RIGHT','TOP'))
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Relative Risk
0.13 to 0.67
0.67 to 0.90
0.90 to 1.10
1.10 to 1.40
1.40 to 2.30

Low risk county
High risk county

Here is an alternative approach using tm_symbols() to plot colored symbols on
the high and low counties.

tm_shape(vlbw) +
tm_fill('RR_bym',

style = 'fixed',
palette = 'PRGn',
breaks = c(0.13, 0.67, 0.9, 1.1, 1.4, 2.3),
title = 'Relative Risk') +

tm_borders() +
tm_shape(vlbw) +
tm_symbols(shape = 'rr_95',

col = 'rr_95',
palette = 'Dark2',
size = .5,
shapeNA = NA,
showNA = FALSE,
legend.shape.show = FALSE,

title.col = 'Significance') +
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tm_layout(legend.outside = TRUE)

Relative Risk
0.13 to 0.67
0.67 to 0.90
0.90 to 1.10
1.10 to 1.40
1.40 to 2.30

Significance
High
Low
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Table 6.1: Vocabulary for Week 6

Term Definition

Bayesian Inference

Bayesian is a process of using
observed data to update prior
beliefs. Typically parameters are
assumed to be random variables
arising from a distribution (e.g.
rather than a discrete and
solitary truth).

Conditional auto-regressive
(CAR)

The CAR is a common prior for
spatial disease mapping,
particularly in a Bayesian
framework. A CAR prior
suggests that the value for a
given area can be estimated
CONDITIONAL ON the level of
neighboring values.

Frequentist Inference

Inference in a frequentist
framework draws conclusions
from sample data by conceiving
of this specific ’experiment’ or
sample as only one of thousands
of possible experiments/samples,
each capable of producing
statistically independent results.
Thus our inference is based on
the probability of a given
parameter (e.g. from one sample
or experiment) arising in relation
to all other (random)
possibilities.

Posterior

In Bayesian inference, the
’posterior’ is a formalized
statement about the updated
belief of the value of a parameter,
conditional on the data (the
likelihood) and the prior.

Prior

In Bayesian inference, the ’prior’
is a formalized statement of the
probability of a parameter, as
stated before we see the data.



Chapter 7

Disease Mapping IV:
Kernel Density Estimation

7.1 Getting Ready

7.1.1 Learning objectives

Table 7.1: Learning objectives by weekly module

After this module you should be able to…
Discuss the meaning and interpretation of basic functions of spatial point
processes including intensity, stationarity, heterogeneity
Produce spatially smoothed estimates of epidemiologic parameters using
kernel density estimators for point and polygon data

7.1.2 Additional Resources

• Adrian Baddeley tutorial on analysis spatial point processes
• Hazelton. Kernel Smoothing Methods. Chapter 10, Handbook of Spatial

Epidemiology. Posted on Canvas

175

https://training.fws.gov/courses/references/tutorials/geospatial/CSP7304/documents/PointPatterTutorial.pdf
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7.1.3 Important Vocabulary

7.2 Spatial Thinking in Epidemiology

7.2.1 Revisiting spatial point processes

People exist in places, but they are not uniformly nor randomly distributed.
More live in cities; fewer live in rural area. But conditional on where people
actually live or work or play, under a null expectation we could treat the oc-
currence of health events (e.g. disease, death, behaviors) as random variables,
and leverage the tools of statistics to characterize when occurrence is what we
would expect versus when it is something unusual.
In spatial analysis, we treat health events as random events among individuals
located in space. Thus, conditional on where people are, we might assume
(again, under the null hypothesis) that the occurrence of events is generated
according to the assumed probability distribution. The utility of the Poisson
Point Process becomes apparent when we see that we could divide a region into
very small sub-regions and count the number of events within each, assuming
that count follows a Poisson distribution.
In the above figure, we quantify the spatial intensity of events by calculating
𝜆 = 𝑛

𝑎𝑟𝑒𝑎 . Thus, all of our statistical analysis to date is premised on this idea
that the spatial location of points can be interpreted through the lens of a
Poisson probability distribution.
But what if we could calculate the spatial intensity more continuously, without
the constraint of a specific parametric distribution, and without using the pos-
sibly arbitrary boundaries and zoning schemes of areal geographic units such as
census tracts, zip codes, or counties?
Spatial point process analysis focuses on characterizing patterns derived directly
from the location of the points themselves, without arbitrary aggregation. The
study of point process analysis is broad, but we will focus on one particularly
flexible strategy this week: kernel density estimation (KDE). Kernel den-
sity estimation has several features making it useful for spatial epidemiology
including:

• It is non-parametric, meaning it does not rely on a specific probability
distribution (e.g. Poisson, negative binomial)

• It provides an alternative means for characterizing local neighbors. The
strategy of the KDE estimators is most similar to inverse distance weight-
ing

• It can be used as a primary tool, or can be an intermediate step for creating
spatial weights, as we will see in geographically weighted regression

• While it is really designed for analyzing points, we can use it on
areal/polygon data as well.
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Figure 7.1: Poisson point process
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7.2.2 What is a kernel density estimator?

A kernel is a function (e.g. mathematically described ‘shape’) that is iteratively
centered over each point of data. For example, a Gaussian kernel means there
is a Gaussian bell-shaped curve centered over each point; the width of the curve
is defined by a parameter, ℎ, which stands for the bandwidth.

Figure 7.2: Kernel density estimator

To estimate the spatial intensity of points, 𝜆̂, we can sum up the area under all
of the kernels to estimate an overall kernel density at each location. This kernel
density estimate essentially reports a spatially continuous summary of the local
intensity of events.

The result is that we can summarize a study region with spatially-referenced
point data using a spatially continuous intensity surface. The analyst decides
on how smooth or bumpy the surface should be by increasing or decreasing the
value of the bandwidth parameter, ℎ. As we will see below, the decision about
bandwidth could be made subjectively (e.g. to produce a visually appealing
surface), or by minimizing error or through cross-validation.

7.2.3 Spatial heterogeneity versus Spatial non-stationarity

By now you are familiar with the concept of spatial heterogeneity as being the
phenomenon where local estimates of intensity, risk, or rate are different in at
least some locations from the global estimates across the entire region. If all
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Figure 7.3: Kernel density smoothing

local rates were statistically similar to the global rate then we could say the
process is spatially homogeneous, and not likely of much interest from a spatial
or cartographic perspective.

In the vocabulary for Disease Mapping 1, we first introduced the terms ‘sta-
tionarity’ versus ‘non-stationarity’ which referred to a closely related idea. A
stationary process is one where the estimate of a statistic (e.g. an intensity,
density, risk, rate, but also a correlation or regression coefficient) is not depen-
dent on location within the region. In other words, the estimate of the statistic
is invariant to choice of local area within the global study region. In contrast,
spatial non-stationarity is present when the estimate of the statistic is dependent
on the location at which the measures are made.
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Distinguishing heterogeneity from non-stationarity
These two concepts are clearly similar. One way to unpack the
subtle differences is to think about two kinds of spatial hetero-
geneity:

1. Areal units (e.g. counties) have different values of the pa-
rameter of interest (e.g. disease rate), but the high-rate
counties and low-rate counties are randomly distributed. In
other words we would conclude there was heterogeneity even
if we randomly mixed up the exact location of the counties.

2. Area units have different values, but the values tend to be
clustered in space such that the high-rate counties are near
one another, and the low-rate counties are near one another.
Thus the value of a given county is dependent on the spatial
location.

This discussion of spatial heterogeneity and spatial non-
stationarity will be relevant in discussion of the spatially varying
statistics in the second part of the Spatial Analysis module this
week, but will be especially relevant when we begin to discuss
spatial clustering and spatial regression.

7.2.4 Limitations in kernel density estimation

There are several features of real data that can limit the accurate estimation of
a true underlying spatial intensity surface. Here are a few:

• Study region and edge effects: In almost any situation, the data avail-
able in a given dataset represents only a subset of the universe of points
and events of interest. We can only carry out KDE on available data,
and if there are boundaries to where data is collected (e.g. only within a
given state boundary), then the intensity of points near boundaries may
be mis-estimated due to missing data. Several of the statistical smoothers
below have options to incorporate adjustments for these edge effects.

• Determining bandwidth: The choice of the kernel bandwidth is per-
haps the most influential decision driving how the final results appear.
While occasionally there may be theoretical grounds for a priori specifi-
cation of bandwidth, often the decision is one of subjective analyst choice
(typically not ideal) or of statistical optimization. In the sections below
there is discussion of fixed versus adaptive bandwidths, as well as some
algorithms for selecting values or at least upper or lower bounds.
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7.2.5 Uses for kernel density estimation (KDE) in spatial
epidemiology

Because kernel density estimation is the only method we will learn this semester
for working with point data, it should be clear that this is one major application.
However, more generally, KDE has broad applications. Here are some examples
of when you might think about using kernel density estimates:

• For producing spatially continuous (typically raster) surfaces representing
disease risk. This is the application most consistent with disease mapping,
where the purpose is to describe spatial heterogeneity in disease intensity
or risk.

• For summarizing point-referenced resources (e.g. retail food outlets; health
care clinics; toxic emitters; etc) as an exposure surface. This strategy is
an alternative to calculating custom distances between each event point
and every other resource or exposure. Instead, the kernel density surface
summarizes the average exposure to all resources at any given point in
space.

• For smoothing and summarizing data measured at an areal or polygon
unit. While KDE is optimized for point data, it is possible to extend it to
smoothing any data (exposure, covariate, or health outcome) measured or
reported at an ecologic areal unit.

• Building on the extension of KDE to polygons, we can summarize social or
economic exposure surfaces. This is a useful way to extend socio-economic-
cultural measures that might be available at census geography to represent
them as not only contained within specific boundaries, but as being ex-
plicitly spatially situated. See tutorial in this eBook appendix.

Distinguishing point intensity from risk intensity
The material above emphasizes the interest in the intensity of
points per unit area. But what does a point represent epidemio-
logically? Usually it represents the location of an observation, but
it is not automatically clear whether the observation is an event
of interest (e.g. illness, death, etc), or whether it is a person at
risk (e.g. a sampled or observed participant who may or may not
experience the event).
For most epidemiologic purposes we care about the ratio of events
to population at risk. We can translate that idea into kernel den-
sity surfaces by estimating two kernel density estimates: one
for the intensity of events (e.g. deaths) per unit area, and the sec-
ond for the intensity of persons at risk for death per unit area. We
can then take the ratio of two kernel density estimates to produce
a risk surface.
This will be illustrated in the following sections.



182CHAPTER 7. DISEASE MAPPING IV: KERNEL DENSITY ESTIMATION

In the next section, we introduce two different uses of kernel density estimation:

1. First is the intensity estimation of spatial point processes consistent with
the description above.

2. Second, we illustrate the use of kernel density estimators to create weights
for geographically-weighted summary statistics, including the spatially
varying mean risk or rate. This strategy can be applied to either points
or to polygons.

7.2.6 Guide to the rest of this section…

There is a lot of content contained in this module. It is worth
highlighting some broad distinctions to help you navigate.
The first section focuses on tools using the sparr and spatstat
packages to create kernel density estimates from point data. This
includes:

– Creating ppp objects for planar point processes
– Creating owin objects to define study regions
– Discussion of several different strategies for selecting a kernel

bandwidth which dictates smoothing
– Creation of kernel density surfaces of single point processes
– Creation of kernel density relative risk surfaces contrasting

the ratio of numerator to denominator intensity
– Visualizing the output in several ways.

The second section introduces a seemingly quite distinct strat-
egy for incorporating kernel density estimators into spatial epi-
demiology. It introduces tools for calculating geographically
weighted summary statistics to characterize spatial heterogene-
ity. These tools use kernel density estimators to geographically
weight observations, and can be applied to points or polygons.
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NOTE:
For most modules this semester, the Spatial Analysis section of
the eBook uses examples to introduce analytic approaches, and
then the in-class Lab uses different data to practice.
Because of the ‘newness’ of kernel density estimators, and the
large volume of information, the following material in the eBook
is very closely aligned with what we will practice in Lab.
I recommend you read through this content before the lab, then
work through the lab itself, then refer back to the eBook as you
have questions.

7.3 Spatial Analysis in Epidemiology: Kernel
estimation of point processes

This section has three specific objectives:

1. Introduce a new spatial data class in R, ppp, which is necessary for exe-
cuting the kernel estimation functions

2. Introduce kernel density estimation of spatial point processes, including
selection of fixed bandwidths, and use of adaptive bandwidths

3. Introduce spatial relative risk surfaces, including estimation of tolerance
contours

7.3.1 Preparing packages and data

There are several new packages that will be required for this work:

pacman::p_load(tidyverse, # for general data management
sf, # for handling sf data class
tmap, # for mapping
spatstat, # A package with tools that underly the sparr package
sparr, # A package for estimating spatial intensity and relative risk
raster) # The outputs of these KDE functions will be raster. This package gives us tools for working with rasters

The data used in this example, and in the lab, concerns the exact 𝑥, 𝑦 residential
location of all births in Dekalb and Fulton county, including indication of infants
who subsequently died within the first year of life.

NOTE: These data are simulated based on approximate patterns.
This is not a representation of actual birth event data.
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The spatial point location for births and infant deaths are in two separate files.
In addition a polygon file providing the outline for Dekalb and Fulton counties
is provided to describe the study window.

# This is points for births in Dekalb/Fulton county
b_point <- st_read('birth_points.gpkg')

# This is points for deaths in Dekalb/Fulton county
d_point <- st_read('death_points.gpkg')

# This is an outline of Dekalb/Fulton county to be used as a study 'window'
county <- st_read('DekalbFultonWindow.gpkg')

7.3.2 Introducing a new spatial data class: ppp

Much of the statistical methods for spatial point process actually developed out
of ecology, and the methods are only merging with the other spatial analysis
and spatial epidemiology fields in recent years. One consequence of this history,
is that the early developers of these methods in R defined their own spatial
data classes, and in this case the class is called ppp for point pattern data in a
two-dimensional plane.

To create a ppp data object we need, at a minimum, two things:

1. A matrix of 𝑥, 𝑦 coordinates for event points
2. A definition for the spatial window or study region.

This window is necessary because nearly any data set is a sub-sample of the
universe of possible points, and analysis of point processes requires appreciation
for the bounds of sampling or observation.

We define the window formally in R as an object of class owin, and it can be a
rectangular bounding box (e.g. the outline of the available data), or a customized
polygon. We will use the outline of Dekalb & Fulton counties as the customized
spatial window for the observation of births and infant deaths.

You can see from the summary and the plot what this owin object looks like.

county_owin <- as.owin(county)
summary(county_owin)

## Window: polygonal boundary
## single connected closed polygon with 698 vertices
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## enclosing rectangle: [1026366.3, 1098719.2] x [1220671, 1302019.3] units
## (72350 x 81350 units)
## Window area = 2086320000 square units
## Fraction of frame area: 0.354

plot(county_owin)

county_owin

7.3.3 Creating the ppp objects

Now we will use the function ppp() to create objects of class ppp for each of the
spatial point files, b_point (representing locations of all births, the denominator
for infant mortality), and d_point (representing locations of all deaths, the
numerator for infant mortality). Doing so requires definition of the study window
defined above as the object name county_owin of class owin.

Again, the study window delineates what is in versus out of the study area
demarcates edges of the study region. You can look at the help documentation
for the function ppp() to see the arguments. Note that because the function
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requires specification of the 𝑥, 𝑦 locations as two separate vectors, we extract
the coordinate values from our sf object using st_coordinates().

Why two ppp objects?
Recall that estimation of a spatial point process is agnostic to
whether the point (or person) had the event (e.g. death) or not
(e.g. live birth who lived past 1 year). To represent the ratio of
deaths to all live births (e.g. the infant mortality rate), we need to
estimate two kernel density surfaces, and then take the ratio.

# Create the birth ppp object
b_ppp <- ppp(x = st_coordinates(b_point)[, 1],

y = st_coordinates(b_point)[, 2],
window = county_owin)

# Create the death ppp object
d_ppp <- ppp(x = st_coordinates(d_point)[, 1],

y = st_coordinates(d_point)[, 2],
window = county_owin)

As you might expect, there are built-in methods (from the spatstat package)
to summarize and plot ppp objects.

summary(d_ppp)

## Planar point pattern: 701 points
## Average intensity 3.359978e-07 points per square unit
##
## Coordinates are given to 2 decimal places
## i.e. rounded to the nearest multiple of 0.01 units
##
## Window: polygonal boundary
## single connected closed polygon with 698 vertices
## enclosing rectangle: [1026366.3, 1098719.2] x [1220671, 1302019.3] units
## (72350 x 81350 units)
## Window area = 2086320000 square units
## Fraction of frame area: 0.354

plot(d_ppp)
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  d_ppp

The summary includes information about the overall spatial intensity
(e.g. events per unit area), as well as the number of points, and the observa-
tional window. The plot for d_ppp should look just like a plot of d_point as
they both contain the same information. Of note, if you repeat the above code
for all of the birth events, b_point, the plot will be less readable because there
are over 94,000 births as compared with only 705 deaths!

7.3.4 Bandwidth selection

As discussed above, and in lecture, the kernel density estimation requires the
analyst to specify a kernel function (e.g. a Gaussian kernel, or a quartic bi-weight
kernel), and a kernel bandwidth.

Of the two, the bandwidth is substantially more impactful on results than choice
of kernel function.

As a reminder, the bandwidth (sometimes indicated by variable ℎ) describes the
width or radius of the kernel function, and as a result dictates how smooth the
resulting intensity surface will be. A small bandwidth will produce a bumpier
or rougher surface, whereas a larger bandwidth will result in more smoothing.
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Bandwidth measures proximity or closeness
Conceptually you might notice a similarity between what the
bandwidth does for spatial analysis to what the definition of spa-
tial neighbors does. In each case it is a kind of ‘local’ inclusion of
data for analysis, within a broader global study region.
Bandwidth defines which sets of points will be considered close
and which are not.

There are two general kinds of bandwidth settings:

1. Fixed bandwidths: A single value of ℎ designates that the width of
the kernel (and thus the resulting smoothness of the estimated intensity
surface) is the same for the entire study region. Fixed bandwidths are com-
monly used, and sensible for a study region with relatively homogeneous
population at risk. However choosing a single value can be challenging in
practice when the density of points varies substantially across the study
region, as could be the case when your study region includes a range from
very urban to very rural.

2. Adaptive bandwidths: As the name implies, this approach changes or
adapts the size of the kernel density bandwidth according to the density of
points (data) in differing sub-areas of the overall study region. The result
is relatively more smoothing (larger bandwidth) in areas with sparse point
data, and relatively less smoothing (smaller bandwidth) in areas with more
point density.

7.3.4.1 Fixed bandwidth methods

If you prefer a fixed bandwidth, the first challenge is choosing what it should
be. One option for selecting a fixed bandwidth is to incorporate theory or prior
knowledge about the process of interest. For instance, if you are trying to un-
derstand whether the prevalence of diabetes is related to local food environment
in an urban area, you might want a bandwidth which helps illuminate differ-
ences in diabetes intensity at a scale consistent with the food environment. For
instance a bandwidth of 1-mile might be more reasonable in urban areas than
one of 50-miles, as the latter would likely smooth away all of the local variation
of interest.

However, it is not uncommon that theory or prior knowledge are insufficient
to make a clear choice, or that data sparsity mandates an alternate approach
driven by concern for stable estimates.

The package sparr has several functions designed to use primarily statistical
optimization for estimating an ‘optimum’ bandwidth. We will introduce two
commonly used statistical bandwidth selection optimizers:
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1. Cross-validation: this approach divides the data into subsets, using
one subset to choose a bandwidth, and comparing the performance on
other subsets. The goal is to find a value that works ‘best’ (e.g. opti-
mize a statistical parameter across multiple iterations). The approach is
computationally intensive for large datasets. As discussed in note below,
cross-validation can result in too small bandwidth estimation.

2. Over-smoothing: this is an alternate approach that aims to identify the
maximum amount of smoothing necessary for minimizing statistical error.
By definition it is a maximum value rather than an ideal or optimal value,
but can be useful in setting bounds.

The sparr package provides three cross-validation approaches to
estimation:

– LCSV.density (least squares cross validated);
– LIK.density (likelihood cross-validated);
– SLIK.adapt (described as an experimental likelihood cross-

validation for adaptive).

Each is ‘optimizing’ a different thing. The LSCV.density mini-
mizes an unbiased estimate of the mean integrated squared error
(MISE) whereas LIK.density maximizes cross-validated leave-
one-out average of the log-likelihood of the density estimate.
If you look at the help documentation for these you will see (near
the bottom) a prominent warning message. It reports that “CV
for bandwidth selection is notoriously unstable in practice and has
a tendency to produced rather small bandwidths…”

7.3.4.2 Cross-validation with LIK.density()

LIK.density() uses likelihood estimation of cross-validation optimal band-
width. For the death dataset, d_ppp, it runs in just a few seconds. However it
took > 5 minutes to produce a value on the much larger births dataset, b_ppp.
This code lets you try it to see what it produces:

h_LIK_d <- LIK.density(d_ppp)

## Searching for optimal h in [27.463186212964, 12058.8149770359]...Done.

print(h_LIK_d)
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## [1] 1613.661

If you examine the object returned (h_LIK_d), you’ll see it is just a single num-
ber. This is the value of ℎ, or the optimized bandwidth. It is, in other words,
the radius of the 2-dimensional kernel density function in the units of the data,
which is meters in this case (e.g. the original data were Albers Equal Area pro-
jected). So this means that the optimum kernel will have a radius of just over
1.5 kilometers.

7.3.4.3 Oversmoothing algorithm with function OS()

This approach is much less computationally intense, and thus feasible for both
of our spatial point processes (e.g. both numerator deaths, and denominator
births). As we will see below, we can use the value returned from OS() as a
pilot value for adaptive bandwidth estimation. In other words it provides a kind
of reference or starting point for the adaptation process.

h_os_d <- OS(d_ppp)
h_os_b <- OS(b_ppp)

print(h_os_d)

## [1] 4257.798

print(h_os_b)

## [1] 1897.371

Note that the birth data have a smaller optimal bandwidth (h_os_b) because
there are more points. More points means more information is available for
more granular smoothing, whereas the relatively more sparse death data have a
larger over smoothing bandwidth (h_os_d).

7.3.4.4 Selecting a common bandwidth for both numerator and de-
nominator

One challenge in bandwidth selection is that we typically have two related spa-
tial point processes (e.g. the numerator, death events; and the denominator,
birth events). Therefore we don’t want only a single KDE, but instead we will
need to consider a numerator representing the spatial intensity of deaths, and
a denominator representing the spatial intensity of all live births at risk. This
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raises the question of whether there should be a common bandwidth for both, or
whether each should be optimized separately.
While there may be only minor differences in the absolute intensity under dif-
ferent bandwidths in a single point process, taking the ratio of two intensity
surfaces can exaggerate small differences to be quite large. There are func-
tions for estimating a single, joint, optimum for the bandwidth. The function
LSCV.risk() does just what the LIK.density() above did, but with two spa-
tial point processes. The code example is below, but like the previous example,
the cross-validation approach to the birth data set takes an excessive amount
of time (at least for this exercise).

#h_LSCV_risk <- LSCV.risk(d_ppp, b_ppp)

7.3.4.5 Adaptive bandwidth methods

Adaptive methods are specified at the time of kernel density estimation. While
the bandwidth is not constant, but instead adaptive, we usually still need to
specify a pilot bandwidth, which is a reference point from which adaptive mod-
ification occurs. As mentioned above, the over-smoothing approach from OS()
can be used as a pilot value.

7.3.5 Estimating Kernel Density surfaces

We now turn to the actual estimation of kernel density approximations of the
underlying spatial intensity of disease. The approach in this lab is to first
illustrate how to estimate separate densities for each point process (e.g. of deaths
and of births), and then to demonstrate two strategies for creating spatial relative
risk surfaces, which is generally the target output for spatial epidemiologists.
Of note, this discussion will demonstrate use of both fixed and adaptive band-
widths. In general adaptive bandwidths may be the most practical approach in
the absence of theoretical or empirical preference otherwise. However there are
instances where fixed bandwidths (either theoretically informed, or as derived
from CV or over-smoothing algorithms) are desired, and thus seeing both in
action is useful.

7.3.5.1 bivariate.density() for KDE of single point process

There are actually several R packages that accomplish kernel density estimation,
but one that is particularly useful for spatial epidemiology (where the kernel
density estimator must be 2-dimensional and we frequently take the ratio of
two densities) is the sparr package, which stands for Spatial and Spatiotemporal
Relative Risk.
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The sparr function bivariate.density() is a flexible and useful tool for car-
rying out KDE with either fixed or adaptive bandwidths. There are many argu-
ments for bivariate.density() (see help documentation), but here are several
worth specifically highlighting.

Function Description
pp This first argument expects a single point process object of

class ppp. We will use either d_ppp or b_ppp
h0 This argument specifies the global fixed bandwidth, if desired.

This could be a theoretically-informed value (i.e. 2000 meters),
or derived from an optimization algorithm (e.g. see above)

hp If conducting adaptive bandwidth estimation, a single pilot
bandwidth is still required, and this is where to specify it.

adapt This logical argument is FALSE by default, but set to TRUE if
you want adaptive bandwidth estimation

edge Because a given dataset is invariably a subset of the real world,
there are likely edges where there is an artificially abrupt
cessation of information. The result is a potentially biased
intensity estimation at the study region edges. However there
are correction factors. We will choose the edge = 'diggle'
specification here

intensity By default, intensity = FALSE which means that by default
bivariate.density() produces a density surface. If you want
an intensity surface, set intensity = TRUE. (See note below)

Intensity versus Density
Up until now we have used the words intensity and density as
if they are synonymous for point process parameter, but that is
not exactly accurate.
Intensity is the average number of points per unit area. The
density is proportionate to the intensity, but scaled so that all
values in the study region sum to 1. In other words a density
surface is a proper probability density function (PDF).
A map of the two will look identical except for the scale or legend.

7.3.5.2 Fixed bandwidth KDE with bivariate.density()

First, let’s try a basic version that uses the over-smooth estimate for each point
process.

death_kde <- bivariate.density(pp = d_ppp, h0 = h_os_d, edge = 'diggle')
birth_kde <- bivariate.density(pp = b_ppp, h0 = h_os_b, edge = 'diggle')



7.3. SPATIAL ANALYSIS IN EPIDEMIOLOGY: KERNEL ESTIMATION OF POINT PROCESSES193

You can explore the objects produced by the function call. For instance, they
are list objects, with named sub-elements:

summary(birth_kde)

## Bivariate Kernel Density/Intensity Estimate
##
## Bandwidth
## Fixed smoothing with h0 = 1897.371 units (to 4 d.p.)
##
## No. of observations
## 94373
##
## Spatial bound
## Type: polygonal
## 2D enclosure: [1026366, 1098719] x [1220671, 1302019]
##
## Evaluation
## 128 x 128 rectangular grid
## 5808 grid cells out of 16384 fall inside study region
## Density/intensity range [6.313906e-14, 1.585466e-09]

names(birth_kde)

## [1] "z" "h0" "hp" "h" "him" "q"
## [7] "gamma" "geometric" "pp"

There is also some plotting functionality built into the sparr package that allows
us to quickly visualize the resulting density plot.

par(mfrow = c(1, 2)) # Plots in 1 row with 2 columns
plot(birth_kde, main = 'Birth density')
plot(death_kde, main = 'Death density')
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par(mfrow = c(1,1)) # Reset plotting space to be 1 row, 1 column

7.3.5.3 Adaptive bandwidth KDE with bivariate.density()

As discussed above, an alternative to a single fixed bandwidth, is implementation
of an algorithm that changes (adapts) the bandwidth across the study region in
response to the density or sparseness of the data. This approach still requires
specification of a global bandwidth, and the adaptation is a multiplier making
the global smaller or larger as needed.
In this code we use the argument h0 = xxx to specify a pilot bandwidth. Because
adaptive bandwidth KDE requires adjustment across the study region, you will
notice that these functions take longer than the fixed bandwidth above, especially
the large birth point process.

death_kde_adapt <- bivariate.density(d_ppp,
h0 = h_os_d,
edge = 'diggle',
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adapt = TRUE,
verbose = FALSE)

birth_kde_adapt <- bivariate.density(b_ppp,
h0 = h_os_b,
edge = 'diggle',
adapt = TRUE,
verbose = FALSE)

par(mfrow = c(1, 2))
plot(birth_kde_adapt, main = 'Birth density\n(adaptive h)')
plot(death_kde_adapt, main = 'Death density\n(adaptive h)')
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par(mfrow = c(1,1))

Why are adaptive maps so similar to fixed bandwidth?
The plots of the intensity from the adaptive bandwidth point pro-
cesses do not look very different from those of the *fixed band-
width processes. The reason is because the units of measurement
(intensity) are so small that differences are not readily apparent.
However the differences become more apparent when we take the
ratio of the two surfaces, which we will do below.

7.3.5.4 Plotting KDE estimates with tmap

It is handy that the sparr package has some built-in plotting functionality to
quickly visualize the results. However you may want to have more control over
the plotting, for instance in tmap or even in ggplot2.

If you recall the named elements in the list object returned by bivariate.density(),
the first is called z, and this is the density surface itself.

class(birth_kde$z)

## [1] "im"

The class of this object is im for image. However for almost any spatial plotting
or operation outside of sparr and spatstat, we want this data in the raster
class rather than this im format (fundamentally the data is a raster model, but
the data structure in R is not quite the same as the data structure of class
raster). We can convert im to raster class like this:

death_kde_raster <- raster(death_kde_adapt$z)
crs(death_kde_raster) <- "EPSG:5070"
birth_kde_raster <- raster(birth_kde_adapt$z)
crs(birth_kde_raster) <- "EPSG:5070"
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Fixing missing CRS projection
Notice in the code above the specification of crs(x) <-
"EPSG:5070".
The im object lost all information about the original coordinate
reference system (CRS) or projection. However, we need our raster
object to have this CRS information to plot properly in tmap. We
know that the original point data were projected in Albers Equal
Area, specifically with EPSG code of 5070. So we re-define that
when creating the rasters above.

Now we can plot these in tmap:

# Create map of death surface
m1 <- tm_shape(death_kde_raster) +
tm_raster(palette = 'BuPu',

style = 'quantile',
n = 9,
title = 'Death density') +

tm_shape(county) +
tm_borders() +

tm_layout(legend.format = list(scientific = T))

# Create map of birth surface
m2 <- tm_shape(birth_kde_raster) +
tm_raster(palette = 'BuPu',

style = 'quantile',
n = 9,
title = 'Birth density') +

tm_shape(county) +
tm_borders() +

tm_layout(legend.format = list(scientific = T))

# plot 2-panel arrangment
tmap_arrange(m1, m2)
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Death density
[9.45e−12, 6.57e−11)
[6.57e−11, 1.46e−10)
[1.46e−10, 2.26e−10)
[2.26e−10, 3.27e−10)
[3.27e−10, 4.67e−10)
[4.67e−10, 6.19e−10)
[6.19e−10, 8.03e−10)
[8.03e−10, 9.85e−10)
[9.85e−10, 1.54e−09]

Birth density
[2.58e−12, 4.72e−11)
[4.72e−11, 1.15e−10)
[1.15e−10, 2.2e−10)
[2.2e−10, 3.54e−10)
[3.54e−10, 4.98e−10)
[4.98e−10, 6.48e−10)
[6.48e−10, 7.92e−10)
[7.92e−10, 9.46e−10)
[9.46e−10, 2.21e−09]

Why do the maps look pixely?
There are two reasons contributing to this.

1. First, the code above specified the colors in quantiles in
order to get a range despite possibly skewed values. But
you could try re-plotting the above plots setting style =
'cont' for continuous color palette, and comment out the
n=9. You will see that this produces a much smoother look-
ing plot. The difference between the plots with style =
'cont' and style = 'quantile' is the gradation of color
in the intermediate levels of intensity.

2. Another reason for the pixelation is because the original call
to bivariate.density() used the default output resolution
of 128 x 128 grid cells. This was done for computational ef-
ficiency. However, note that if you want a higher-resolution
surface (e.g. for publication, presentation), you can increase
by specifying resolution = in the creation of the KDE sur-
face in the original call to bivariate.density().
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7.3.6 Creating relative risk surface manually

Up until now, we have only created the KDE surface for the death and birth
points separately. But for epidemiology, we rarely care about numerator and
denominator separately! So how do we put these two together into a more
informative disease map?

Raster algebra is a term for arithmetic and algebraic manipulation of raster
grids. Recall that a raster data set is simply a array of numbers. The numbered
value of each grid-point represents the mean density or intensity of points per
unit-area, and is mapped as color to make the plot.

Because it is simply a matrix of numbers, we can take two rasters of the same
resolution and study area and add, subtract, multiply, log-transform, or other-
wise operate on them arithmetically.

For instance to manually create spatial relative risk surface we simply take the
ratio of two KDE density surfaces. The result is a relative measure akin to the
SMR: it quantifies the relative deviation of each area from an overall average
value. So values below 1 are areas with lower than average risk, meaning that
the intensity of deaths is less than the intensity of live births, and values above 1
have higher than average risk (the intensity of deaths is greater than the intensity
of live births).

Intensity vs Density matters for taking a ratio
For interpreting the ratio of two kernel surfaces take care to dis-
tinguish between the spatial intensity (number of point events
per unit area; the value integrates or sums to the total number of
points across the study region) versus the spatial density (prob-
ability of a point event occurring at this location, conditional on
total number of points; integrates to 1 across the study region).
The distinction is important.
The default output of bivariate.density() function is a spatial
density surface. The ratio of two density (probability) surfaces
will take the value of 1.0 when the probability of a death at that
location is proportionate to the probability of a birth at that lo-
cation.
In contrast the ratio of two intensity surfaces is interpreted as
an absolute measure (e.g. risk, rate, prevalence) ranging from
zero to 1. If you choose intensity = TRUE when specifying the
bivariate.density() function you will get the intensity rather
than (default) density surface.

In the tmap call I flipped the color ramp by using the negative sign in front of
the name of the ramp. I also specified a continuous style rather than discrete
(e.g. quantile), and specified some legend breaks.



200CHAPTER 7. DISEASE MAPPING IV: KERNEL DENSITY ESTIMATION

# Create risk surface as ratio of death density to birth density
risk <- death_kde_raster / birth_kde_raster

# Map it...
tm_shape(risk) +
tm_raster(palette = '-RdYlGn',

style = 'cont',
breaks = c(0.1, 0.6, 0.9, 1.1, 2, 4.9),
title = 'IMR SMR') +

tm_shape(county) +
tm_borders()

IMR SMR
0.1
0.6
0.9
1.1
2.0
4.9

Now we can more clearly see regions of higher risk and lower risk of infant
mortality!
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7.3.7 Creating relative risk surface with risk() function

The preceding manual approach created two separate kernel density surfaces,
and then manually relied on raster algebra to create the spatial relative risk
surface. This is useful to know because you may use KDE in other setting where
you only work with a single spatial point process (e.g. imagine that instead of
estimating disease intensity, you wish to estimate an exposure density surface).

However, the sparr package provides a shortcut for estimation of spatial relative
risk surfaces in the function risk(). It takes a numerator and denominator ppp
object as arguments and calculates the spatial relative risk surface automatically.

As a demonstration of comparing four pre-defined (possibly theoretically in-
formed, or possibly arbitrary), fixed bandwidths for the purposes of data explo-
ration, below we estimate four distinct spatial relative risk surfaces, as well as
one adaptive KDE. In each case notice the first two arguments are the numer-
ator and denominator ppp object. The next argument is a pre-specified fixed
bandwidth (e.g. 1000, 2000, 4000, and 8000 meters).

This function also illustrates another feature which allows us to quantify statisti-
cal precision by creating tolerance contours. Tolerance contours are simply lines
which encircle regions that are statistically significant beyond a given threshold.
The argument tolerate = T tells the function to estimate asymptotic p-values
testing the null hypothesis that the local relative risk of death is equal across
the study region.

By default, the function estimates the log relative risk, which is a helpful re-
minder that the relative risk is asymmetric. However, we understand ratio
measures, and will be careful to plot the results appropriately. For that reason,
I set log = FALSE, although obviously you could omit that and keep everything
on the log scale.

NOTE: The fixed bandwidth risk() functions will run quickly, but once again,
the adaptive bandwidth is more computationally intensive, and will take longer.

imr1000 <- risk(d_ppp, b_ppp, h0 = 1000,
tolerate = T,
verbose = F,
log = F,
edge = 'diggle')

imr2000 <- risk(d_ppp, b_ppp, h0 = 2000,
tolerate = T,
log = F,
edge = 'diggle',
verbose = F)
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imr4000 <- risk(d_ppp, b_ppp, h0 = 4000,
tolerate = T,
log = F,
edge = 'diggle',
verbose = F)

imr8000 <- risk(d_ppp, b_ppp, h0 = 8000,
tolerate = T,
log = F,
edge = 'diggle',
verbose = F)

imradapt <- risk(d_ppp, b_ppp,
h0 = h_os_d,
adapt = T,
tolerate = T,
log = F,
edge = 'diggle',
verbose = F)

Examine the contents of one of these objects. The summary show us the range
of the estimated risk, the resolution of the evaluation grid, and the number of
points evaluated.

summary(imr1000)

## Log-Relative Risk Function.
##
## Estimated risk range [-8.216873e-14, 11.05946]
##
## --Numerator (case) density--
## Bivariate Kernel Density/Intensity Estimate
##
## Bandwidth
## Fixed smoothing with h0 = 1000 units (to 4 d.p.)
##
## No. of observations
## 701
##
## Spatial bound
## Type: polygonal
## 2D enclosure: [1026366, 1098719] x [1220671, 1302019]
##
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## Evaluation
## 128 x 128 rectangular grid
## 5808 grid cells out of 16384 fall inside study region
## Density/intensity range [-1.82875e-25, 2.78467e-09]
##
## --Denominator (control) density--
## Bivariate Kernel Density/Intensity Estimate
##
## Bandwidth
## Fixed smoothing with h0 = 1000 units (to 4 d.p.)
##
## No. of observations
## 94373
##
## Spatial bound
## Type: polygonal
## 2D enclosure: [1026366, 1098719] x [1220671, 1302019]
##
## Evaluation
## 128 x 128 rectangular grid
## 5808 grid cells out of 16384 fall inside study region
## Density/intensity range [2.143127e-16, 2.383589e-09]

names(imr1000)

## [1] "rr" "f" "g" "P"

NOTICE
You can see that the range of the estimated risk is [−8.216873𝑒 −
14, 11.05946]. The lower bound is in practical terms zero (e.g. it is
very, very small), but counter-intuitively it is also negative! How
could we estimated negative risk? The answer seems to be re-
lated to the Diggle edge correction. For example if you substitute
edge = 'uniform' the anomaly goes away. This is likely because
edge correction (which in the big picture is a valuable strategy)
reweights regions and may result in specific location estimates that
become negative.

Once again, we can use built-in plotting functionality from sparr to produce
maps of the spatial relative risk surface and the tolerance contours. (NOTE:
the default legend works best for log relative risk, but doesn’t behave well for
the relative risk because it treats the distance from 0 to 1 as the same as the
distance from 1 to 2, or 4 to 5).
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par(mar = c(1,1,1,1)) # adjust the plotting margins
par(mfrow = c(3,2)) # Plot 3 rows and 2 columns
plot(imr1000)
plot(imr2000)
plot(imr4000)
plot(imr8000)
plot(imradapt)
par(mfrow = c(1,1)) # reset the plot space to 1 row, 1 col
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While the code above plots these side-by-side, you might find it easier to plot
them one at a time and zoom in closer.
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Things to notice in above plots:

1. Notice the contour lines for 𝑝 < 0.05.

2. Notice how the risk surface becomes smoother as the fixed
bandwidth transitions from 1𝑘𝑚 to 8𝑘𝑚.

3. Finally, notice how the adaptive bandwidth is consistent
with the other maps, but seems to balance the detail be-
tween the 2000 meter and 4000 meter definitions.

7.3.8 Using functions to map RR with tmap

When we begin plotting several maps, the conversion from the im to raster and
the code for producing map panels can feel cumbersome. While the following
section is not required, it is a demonstration of how you can write simple custom
functions in R to speed up repetitive tasks.

A function in R is like a macro in SAS; it is simply a set of instructions that
accepts arguments (inputs), carries out some action on those inputs, and then
returns some output. Thus, it helps automate cumbersome tasks so you can do
them repeatedly and efficiently.

Below is a function that accepts a single argument, labeled simply x here. The
expectation is that x should be the output from one of the preceding calls to
the risk() function.

Notice how the function first extracts the spatial relative risk surface (e.g. x$rr),
and then assigns the appropriate projection (it got stripped off some where along
the way).

Then the function extracts the probability map which is the set of pixel-specific p-
values. The rasterToContour() function takes this raster and creates contour
lines with the specified levels corresponding to a 95% tolerance contour. Finally,
the use of the return() tells what should be returned when the function is
called.

Once you write a function, it need only be loaded once in a given session;
afterwords you can call it by using prepRaster(x = my_risk_object).

### --- prepRaster() function --- ###
prepRaster <- function(x){
rr <- raster(x$rr)
crs(rr) <- "EPSG:5070"

p_raster <- raster(x$P)
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crs(p_raster) <- "EPSG:5070"
plines <- rasterToContour(p_raster, levels = c(0.025, 0.975))

return(list(rr=rr,plines=plines))
} ## END prepRaster() ##

While we’re on a roll, we could also write a function for producing a tmap panel:

### --- make_map() function to create panel maps --- ###
make_map <- function(x, bw){
mtitle <- paste('IMR - ', bw, ' smooth', sep = '')
tm_shape(x$rr) +
tm_raster(palette = '-RdYlGn',

style = 'cont',
breaks = c(0.1, 0.6, 0.9, 1.1, 2, 4.9),
midpoint = NA,
title = 'IMR SMR') +

tm_shape(x$plines) +
tm_lines(col = 'level',

legend.col.show = F) +
tm_layout(main.title = mtitle,

legend.format = list(digits = 1))
} ## END make_map() function ##

The result of this work is that we can easily (and more compactly), map the
four fixed-bandwidth spatial relative risk surfaces.

# First convert to raster and extract p-value contours
rr_1000 <- prepRaster(imr1000)
rr_2000 <- prepRaster(imr2000)
rr_4000 <- prepRaster(imr4000)
rr_8000 <- prepRaster(imr8000)
rr_adapt <- prepRaster(imradapt)

# Then produce map panels
m1000 <- make_map(rr_1000, '1 km')
m2000 <- make_map(rr_2000, '2 km')
m4000 <- make_map(rr_4000, '4 km')
m8000 <- make_map(rr_8000, '8 km')
mapadapt <- make_map(rr_adapt, 'adaptive')

tmap_arrange(m1000, m2000, m4000, m8000,mapadapt, ncol = 2)
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IMR − 1 km smooth

IMR SMR
0.1
0.6
0.9
1.1
2.0
4.9

IMR − 2 km smooth

IMR SMR
0.1
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2.0
4.9

IMR − 4 km smooth

IMR SMR
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IMR − 8 km smooth

IMR SMR
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IMR − adaptive smooth

IMR SMR
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7.4 Spatial Analysis in Epidemiology: Kernel
estimation of areal data

In the preceding section we saw how to use KDE for estimating a smooth spatial
intensity surface from a spatial point process. In this section we introduce
geographically-weighted statistics that are extendable to areal units and not only
points. There were three key features about the use of KDE from the preceding
section that we will expand on here:

1. KDE are not only for points - while the whole notion of the kernel density
estimation process is indeed connected to the 𝑥, 𝑦 point location, this does
not mean we cannot take advantage of the non-parametric smoothing for
other kinds of data, such as polygons. Typically the centroid (geometric
center) of a polygon is used as the stand-in for point when KDE is done
with polygons.

2. KDE is not only for binary values - a spatial point process is by definition
the description of the location of discrete points representing a discrete
state. For instance in section above, we visualized the spatial intensity
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surface of infant deaths, and separately the surface of live births. But
what if we want to measure a continuous value rather than a discrete,
binary state at spatial locations? The mechanics of KDE can still be
helpful!

3. KDE is a kind of spatial weighting procedure - this was true in Part A as
well…the spatial intensity is essentially the spatially-weighted number of
points surrounding an index location divided by the area under the kernel
function. In this lab the primary use of the kernel function is to produce
weights for calculating weighted-statistics including mean, median, etc of
any quantity that is measured.

To accomplish these extensions we will use functions in the package GWmodel
(e.g. geographically weighted models) that are very useful for exploratory spatial
data analysis. The main function used here, gwss(), stands for geographically
weighted summary statistics, and uses the non-parametric spatial weighting of
a kernel density function to compute locally varying descriptive statistics such
as the mean, median, standard deviation, correlation, and more. And while it
certainly works for data represented as 𝑥, 𝑦 points, it can also work for polygon
data.

What this means is that the gwss() function can be useful for exploring spatial
heterogeneity as a form of local spatial non-stationarity. Recall that spatial
stationarity is the notion that a statistical parameter is global or constant across
space?

We previously encountered stationarity as the opposite of spatial heterogeneity.
In that context we were referring to the risk or prevalence of health states.
But any statistic can be stationary (constant) or non-stationary (spatially
varying).

The objective of this section is to extend our understanding of the utility of
kernel density functions beyond simply computing intensity or density surfaces
to seeing them as a tool for creating spatially local weights for any statistical
function. We will use the same study region (Fulton and Dekalb counties),
but now will be looking at several socio-contextual covariates derived from the
American Community Survey to be considered along with the infant mortality
rate produced above.

This section focuses primarily on the gwss() function to accomplish the follow-
ing tasks:

• Estimate a statistically-optimal fixed bandwidth and explore adaptive band-
widths for use with the gwss() function

• Calculate local, spatially-weighted mean, median, SD, and IQR for four
census-tract level continuous measures using kernel density functions

• Using Monte Carlo simulation to produces significance contours on our
estimates of local, spatially-weighted summary statistics
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• Calculate local, spatially-weighted bivariate statistics summarizing how
the correlations (Pearson and Spearman) of pairs of variables varies
through space

7.4.1 Packages and data

The new package introduced here is GWmodel, but several other familiar packages
will also be useful:

library(tidyverse) # For data piping and manipulationlibrary(GWmodel) # Has the function gwss()
library(sf) # For import of sf data
library(sp) # For conversion to sp, required for GWmodel
library(tmap) # For mapping
library(GWmodel) # Geographically weighted statistics

sp Data class
In addition to those new packages, we will also need the sp pack-
age. Recall that we have only worked with sf class data up until
now, although we learned that sp was the older format for spa-
tial data in R. Some packages and functions (including GWmodel)
have not incorporated compatibility with sf data, so we will need
to convert some particular objects from sf to sp before moving
forward.

The methods introduced in this section will work for either spatial points or
spatial polygons. However for this example we will demonstrate their use specif-
ically for spatial polygons, and more specifically polygons representing the census
tracts in Fulton and Dekalb counties. This dataset has 345 census tract poly-
gons (4 tracts were deleted due to missing values), and summarizes five summary
measures of each tract:

Variable Definition
GEOID Unique ID for each census tract unit
pctNOHS % of adults over 25 without a high school diploma

or GED
pctPOV % of the population living below the federal

poverty line
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Variable Definition
ICE_INCOME_all Index of Concentration at the Extremes, which is

an index of the concentration of poverty and
affluence. It ranges from -1 (concentrated poverty)
to +1 (concentrated affluence), with values near
zero having equal income distribution

pctMOVE % of households who moved in the past 12 months
pctOWNDER_OCC % of households occupied by owners (e.g. rather

than renters)

First, we read in the gpkg data as an sf object, and then convert it to sp for
use with GWmodel. As with the sparr package, GWmodel is not yet fully sf
compliant so we are forced to use sp data classes. This will likely change at
some point in the future.

# This is Dekalb/Fulton census tracts
atl <- st_read('Fulton-Dekalb-covariates.gpkg') %>%
as('Spatial') # convert to sp class (required for GWmodel)

7.4.1.1 Mapping the observed values

To understand the new data, consider using summary(), or other exploratory
functions, as well as producing some simple maps to see the spatial distribution
of these variables. Recall that the tmap package works for both sf and sp data!
This means that we can map the object in the ‘usual manner’ even though we
converted it to sp.

# First map the 4 variables that are %
tm_shape(atl) +
tm_fill(c('pctNOHS', 'pctPOV', 'pctMOVE', 'pctOWNER_OCC'),

style = 'quantile') +
tm_borders()
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pctNOHS
0.000 to 0.011
0.011 to 0.028
0.028 to 0.053
0.053 to 0.085
0.085 to 0.538

pctPOV
0.010 to 0.065
0.065 to 0.124
0.124 to 0.197
0.197 to 0.318
0.318 to 0.806

pctMOVE
0.036 to 0.113
0.113 to 0.162
0.162 to 0.197
0.197 to 0.248
0.248 to 0.630

pctOWNER_OCC
0.000 to 0.289
0.289 to 0.428
0.428 to 0.583
0.583 to 0.729
0.729 to 0.991

The Index of Concentration at the Extremes (ICE) ranges from -1 to +1. A
value of −1 occurs where everyone in the tract is poor; a value of +1 occurs
in tracts where everyone is affluent; a value of 0 suggests that either there
is a balance of affluence and poverty, or alternatively that everyone is ‘middle
income’. Therefore it makes sense to map it separately because it will inevitably
need a divergent color ramp.

tm_shape(atl) +
tm_fill('ICE_INCOME_all',

style = 'quantile',
palette = 'div') +

tm_borders()
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ICE_INCOME_all
−0.680 to −0.259
−0.259 to −0.092
−0.092 to 0.068
0.068 to 0.262
0.262 to 0.720

7.4.1.2 Why are we using KDE on these data?

There could be at least two general reasons you might think to use a spatial
smoothing approach such as KDE for continuous data such as these:

1. You believe the estimates at each for each spatial unit (polygons in this
case, but could be points) are statistically unstable, and you believe that
averaging them with their neighbors will produce a more reliable estimate
of the parameter of interest; or

2. You are interested in identifying spatial patterns or trends that are pos-
sibly larger scale than the data units themselves. For instance you might
be looking for regions of the city where there is apparent clustering of
poverty, home ownership, or residential instability. In other words you
suspect that people are not only exposed to values within the boundaries
of their tracts, but also to nearby environments.
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7.4.2 What bandwidth for kernel density estimates?

Recall that the decision about the bandwidth of the kernel density function is
one of the most influential to in using KDE for spatial epidemiology. The reason
is because the bandwidth defines the smoothness or bumpiness of the statistical
estimation, and different choices can produce dramatically different results.

Once again, we might have theoretically important criteria for selecting a band-
width, or we could use a statistical optimization approach. In GWmodel the
function bw.gwss.average() is used for estimating the ‘optimal’ bandwidth for
estimating the spatially varying mean or median using cross-validation. There
is no specific function for other statistics (e.g. the SD, IQR, or correlation coef-
ficients). Because the spatial structure might be different for each variable, we
can evaluate all variables:

# Fixed bandwidth selection
bw.gwss.average(atl, vars = c('pctPOV', 'pctPOV', 'pctMOVE',

'pctOWNER_OCC', 'ICE_INCOME_all'))

## pctPOV pctPOV pctMOVE pctOWNER_OCC ICE_INCOME_all
## Local Mean bw 58801.33 58801.33 58801.33 65740.07 65740.07
## Local Median bw 65740.07 65740.07 58801.33 70028.45 65353.39

These numbers are in the units of the map, which are meters. This suggests
that the we need a pretty large fixed bandwidth (between 58 and 70 km!), at
least to minimize the error as determined from the cross-validation approach.

Adaptive bandwidth in GWmodel
Adaptive bandwidth in GWmodel works a little differently from
how it did in the sparr package. When we choose adaptive =
TRUE what is returned is not a distance in the units of the map
(e.g. meters) but instead is a number of nearest neighbors that
defines how large or small the kernel function adapts.
This is important conceptually for what adaptation means: in
GWmodel the unit of analysis is the census tract, not the individual
person. So a census tract with 10 people and a census tract with
10,000 are assumed to have the same amount of information.

# Adapative bandwidth selection
bw.gwss.average(atl, vars = c('pctPOV', 'pctNOHS', 'pctMOVE',

'pctOWNER_OCC', 'ICE_INCOME_all'),
adaptive = T)
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## pctPOV pctNOHS pctMOVE pctOWNER_OCC ICE_INCOME_all
## Local Mean bw 315 268 297 337 333
## Local Median bw 297 297 315 326 315

Again, we see the same story that the CV approach suggests a very large band-
width. There are only 345 areal units in this dataset, and this suggests that
nearly all of them should be included in the kernel. That would produce very
little spatial variation. While the idea of a statistical optimization approach is
appealing, as we discussed above, the CV methods is known to be imperfect.

For now we will use a more common-sense approach. It would seem that we
might balance local information and spatial variation by including no more than
10% of the data in any single kernel density estimation location. So we could
choose to use 𝑛 = 35 neighbors as the definition of our adaptive bandwidth. Note
that you could alter this number to see how the results vary.

7.4.3 Geographically weighted summary statistics: gwss()

To more fully describe and explore our ‘raw’ data, we want to summarize it
by smoothing out extremes, and looking for broad spatial trends in the values.
Finding a local average value can be done using either a mean or median to
quantify central tendency. Obviously, if the distribution of the data within local
regions is relatively normally distributed (or at least symmetric), the mean and
median will be similar. But if the data are quite skewed, we might prefer the
median as a summary measures.

Similarly, knowing whether (or how much) local measures are alike or different
is informative. Once again we could choose a statistic that works well to de-
scribe variation for normally-distributed (or symmetric) data (e.g. the standard
deviation), or one that performs well with non-normal or skewed data (e.g. the
inter-quartile range). Finding large values of either the SD or IQR would sug-
gest substantial local heterogeneity or difference in the target measure, whereas
small values would suggest that local areas are relatively similar.

The gwss() function actually estimates more than just those listed above, but
for now we will only focus on those measures.

To calculate the geographically-weighted summary statistics using gwss() we
need to provide a dataset, a single variable (or vector of multiple variables), a
decision about using fixed or adaptive bandwidth, and finally a specification of
bw or bandwidth itself. And once again, the value you enter for bw depends on
whether you select adaptive = T or not.

If fixed bandwidth, the value you enter is a number in the units of the map
(e.g. meters in our case). But if you are requesting an adaptive bandwidth,
the value for bw is not in meters, but is actually a number or count of how
many nearest neighbors should minimally be included in the kernel density
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estimation at each location. As discussed above, I will use 𝑛 = 35 as an adaptive
definition of neighbors. This will result in each summary estimation including
approximately 10% of the total data. Because we would like what are called
robust statistics (e.g. the median and IQR which are robust to skewed or non-
normal data), we also must specify the argument quantile = T.

atl.ss <- gwss(atl, vars = c('pctPOV', 'pctNOHS', 'pctMOVE', 'pctOWNER_OCC',
'ICE_INCOME_all'),

adaptive = T,
bw = 35,
quantile = T)

Perhaps unintuitively, the way to get a summary of the result is not the usual
summary(), but instead to type print(atl.ss). When you do so you will see
A LOT of results. We will focus for the moment on just the results at the very
top (local mean; local SD) and at the very bottom (local median; local IQR) of
the output.

print(atl.ss)

## ***********************************************************************
## * Package GWmodel *
## ***********************************************************************
##
## ***********************Calibration information*************************
##
## Local summary statistics calculated for variables:
## pctPOV pctNOHS pctMOVE pctOWNER_OCC ICE_INCOME_all
## Number of summary points: 345
## Kernel function: bisquare
## Summary points: the same locations as observations are used.
## Adaptive bandwidth: 35 (number of nearest neighbours)
## Distance metric: Euclidean distance metric is used.
##
## ************************Local Summary Statistics:**********************
## Summary information for Local means:
## Min. 1st Qu. Median 3rd Qu. Max.
## pctPOV_LM 0.050645 0.119765 0.180836 0.270868 0.3947
## pctNOHS_LM 0.011338 0.031796 0.051985 0.079042 0.1369
## pctMOVE_LM 0.129222 0.166627 0.185688 0.215939 0.3356
## pctOWNER_OCC_LM 0.214225 0.421030 0.486894 0.568339 0.7545
## ICE_INCOME_all_LM -0.363659 -0.161687 -0.010174 0.180475 0.3921
## Summary information for local standard deviation :
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## Min. 1st Qu. Median 3rd Qu. Max.
## pctPOV_LSD 0.030466 0.080964 0.095033 0.122989 0.2000
## pctNOHS_LSD 0.013018 0.027740 0.038529 0.055891 0.1512
## pctMOVE_LSD 0.043404 0.062143 0.070973 0.085519 0.1594
## pctOWNER_OCC_LSD 0.128460 0.171147 0.193042 0.236043 0.3127
## ICE_INCOME_all_LSD 0.098726 0.153791 0.186239 0.214184 0.2949
## Summary information for local variance :
## Min. 1st Qu. Median 3rd Qu. Max.
## pctPOV_LVar 0.00092817 0.00655511 0.00903123 0.01512619 0.0400
## pctNOHS_LVar 0.00016947 0.00076952 0.00148449 0.00312385 0.0229
## pctMOVE_LVar 0.00188388 0.00386175 0.00503717 0.00731354 0.0254
## pctOWNER_OCC_LVar 0.01650192 0.02929137 0.03726506 0.05571613 0.0978
## ICE_INCOME_all_LVar 0.00974689 0.02365154 0.03468479 0.04587486 0.0870
## Summary information for Local skewness:
## Min. 1st Qu. Median 3rd Qu. Max.
## pctPOV_LSKe -0.60296 0.40145 0.88760 1.50706 4.5718
## pctNOHS_LSKe -0.26353 0.80588 1.38779 2.41449 7.7612
## pctMOVE_LSKe -0.43164 0.27893 0.58307 0.97433 2.6409
## pctOWNER_OCC_LSKe -1.21089 -0.41080 -0.10531 0.17408 1.1014
## ICE_INCOME_all_LSKe -1.03050 -0.18046 0.17660 0.55386 1.8477
## Summary information for localized coefficient of variation:
## Min. 1st Qu. Median 3rd Qu. Max.
## pctPOV_LCV 0.21281 0.41550 0.57740 0.73493 1.1784
## pctNOHS_LCV 0.31989 0.49239 0.85060 1.30476 2.2432
## pctMOVE_LCV 0.23460 0.35345 0.38736 0.42998 0.6638
## pctOWNER_OCC_LCV 0.20111 0.35046 0.42753 0.51556 0.7493
## ICE_INCOME_all_LCV -127.78594 -1.02921 -0.35211 1.03900 94.7817
## Summary information for localized Covariance and Correlation between these variables:
## Min. 1st Qu.
## Cov_pctPOV.pctNOHS -0.002293092 0.000901241
## Cov_pctPOV.pctMOVE -0.002989390 0.000907888
## Cov_pctPOV.pctOWNER_OCC -0.039119689 -0.020228990
## Cov_pctPOV.ICE_INCOME_all -0.054587425 -0.021777955
## Cov_pctNOHS.pctMOVE -0.006067192 0.000036009
## Cov_pctNOHS.pctOWNER_OCC -0.028576009 -0.005198261
## Cov_pctNOHS.ICE_INCOME_all -0.027722207 -0.005410855
## Cov_pctMOVE.pctOWNER_OCC -0.026758619 -0.012236511
## Cov_pctMOVE.ICE_INCOME_all -0.017867269 -0.008467689
## Cov_pctOWNER_OCC.ICE_INCOME_all 0.007196400 0.020528232
## Corr_pctPOV.pctNOHS -0.317000144 0.330201284
## Corr_pctPOV.pctMOVE -0.331272313 0.157747220
## Corr_pctPOV.pctOWNER_OCC -0.926032270 -0.768233160
## Corr_pctPOV.ICE_INCOME_all -0.921214422 -0.855191644
## Corr_pctNOHS.pctMOVE -0.555196633 0.009497939
## Corr_pctNOHS.pctOWNER_OCC -0.742254592 -0.495928778
## Corr_pctNOHS.ICE_INCOME_all -0.793477505 -0.545592647
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## Corr_pctMOVE.pctOWNER_OCC -0.891153190 -0.746883164
## Corr_pctMOVE.ICE_INCOME_all -0.817237195 -0.594811585
## Corr_pctOWNER_OCC.ICE_INCOME_all 0.476114554 0.736449688
## Spearman_rho_pctPOV.pctNOHS -0.313709999 0.399932352
## Spearman_rho_pctPOV.pctMOVE -0.338963728 0.215510831
## Spearman_rho_pctPOV.pctOWNER_OCC -0.932742660 -0.772363010
## Spearman_rho_pctPOV.ICE_INCOME_all -0.945687048 -0.876406885
## Spearman_rho_pctNOHS.pctMOVE -0.407210551 0.057271829
## Spearman_rho_pctNOHS.pctOWNER_OCC -0.828797842 -0.551819264
## Spearman_rho_pctNOHS.ICE_INCOME_all -0.840537241 -0.647642983
## Spearman_rho_pctMOVE.pctOWNER_OCC -0.885112112 -0.731419517
## Spearman_rho_pctMOVE.ICE_INCOME_all -0.832992937 -0.560002101
## Spearman_rho_pctOWNER_OCC.ICE_INCOME_all 0.454870395 0.712341847
## Median 3rd Qu. Max.
## Cov_pctPOV.pctNOHS 0.001807506 0.003304389 0.0180
## Cov_pctPOV.pctMOVE 0.002229805 0.004467243 0.0099
## Cov_pctPOV.pctOWNER_OCC -0.014516859 -0.009563665 -0.0016
## Cov_pctPOV.ICE_INCOME_all -0.014606879 -0.009577934 -0.0023
## Cov_pctNOHS.pctMOVE 0.000331801 0.000748402 0.0038
## Cov_pctNOHS.pctOWNER_OCC -0.002496901 -0.001218701 0.0065
## Cov_pctNOHS.ICE_INCOME_all -0.002789993 -0.001573582 0.0039
## Cov_pctMOVE.pctOWNER_OCC -0.008392739 -0.005565503 0.0056
## Cov_pctMOVE.ICE_INCOME_all -0.005403826 -0.002219461 0.0149
## Cov_pctOWNER_OCC.ICE_INCOME_all 0.031021243 0.044464726 0.0689
## Corr_pctPOV.pctNOHS 0.528380318 0.709155971 0.9313
## Corr_pctPOV.pctMOVE 0.336717286 0.519424037 0.7694
## Corr_pctPOV.pctOWNER_OCC -0.701980159 -0.604820576 -0.3121
## Corr_pctPOV.ICE_INCOME_all -0.805848933 -0.738051250 -0.2913
## Corr_pctNOHS.pctMOVE 0.134766298 0.300808384 0.6833
## Corr_pctNOHS.pctOWNER_OCC -0.380222665 -0.228294821 0.4213
## Corr_pctNOHS.ICE_INCOME_all -0.446961901 -0.323081384 0.3913
## Corr_pctMOVE.pctOWNER_OCC -0.613431373 -0.433099806 0.2776
## Corr_pctMOVE.ICE_INCOME_all -0.458003819 -0.189021343 0.5593
## Corr_pctOWNER_OCC.ICE_INCOME_all 0.813864246 0.868133644 0.9618
## Spearman_rho_pctPOV.pctNOHS 0.556988603 0.704535569 0.9311
## Spearman_rho_pctPOV.pctMOVE 0.374243796 0.529475103 0.7608
## Spearman_rho_pctPOV.pctOWNER_OCC -0.699827624 -0.621225648 -0.3108
## Spearman_rho_pctPOV.ICE_INCOME_all -0.839312766 -0.774693178 -0.3117
## Spearman_rho_pctNOHS.pctMOVE 0.174120074 0.303105444 0.5853
## Spearman_rho_pctNOHS.pctOWNER_OCC -0.428396144 -0.245467087 0.2446
## Spearman_rho_pctNOHS.ICE_INCOME_all -0.524973642 -0.381356579 0.1699
## Spearman_rho_pctMOVE.pctOWNER_OCC -0.619497465 -0.450139874 0.3082
## Spearman_rho_pctMOVE.ICE_INCOME_all -0.428406930 -0.173601402 0.4005
## Spearman_rho_pctOWNER_OCC.ICE_INCOME_all 0.797280146 0.852406288 0.9477
## Summary information for Local median:
## Min. 1st Qu. Median 3rd Qu. Max.
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## pctPOV_Median 0.042468 0.090310 0.161004 0.251916 0.3919
## pctNOHS_Median 0.003663 0.014632 0.042506 0.068828 0.1053
## pctMOVE_Median 0.095830 0.158633 0.186185 0.201781 0.3108
## pctOWNER_OCC_Median 0.191905 0.391960 0.490220 0.602281 0.8389
## ICE_INCOME_all_Median -0.384111 -0.195011 -0.023930 0.170068 0.3830
## Summary information for Interquartile range:
## Min. 1st Qu. Median 3rd Qu. Max.
## pctPOV_IQR 0.0272517 0.0846864 0.1150697 0.1709975 0.3370
## pctNOHS_IQR 0.0071992 0.0233457 0.0362078 0.0567798 0.1961
## pctMOVE_IQR 0.0492332 0.0777156 0.0943680 0.1143242 0.2195
## pctOWNER_OCC_IQR 0.0695205 0.2406716 0.2930468 0.3634722 0.6663
## ICE_INCOME_all_IQR 0.0741381 0.1853240 0.2307883 0.2932845 0.5597
## Summary information for Quantile imbalance:
## Min. 1st Qu. Median 3rd Qu. Max.
## pctPOV_QI -0.8423900 -0.3575769 -0.1613870 0.0836692 0.7498
## pctNOHS_QI -0.9376945 -0.5163889 -0.2601448 0.0084147 0.4966
## pctMOVE_QI -0.7152669 -0.2848576 -0.0713806 0.1454639 0.7001
## pctOWNER_OCC_QI -0.7647186 -0.1424103 0.0614975 0.2285407 0.7302
## ICE_INCOME_all_QI -0.8670434 -0.2368184 -0.0310687 0.1636269 0.8803
##
## ************************************************************************

What the summary gives you is information for the range of smoothed values
for each statistic, and for each variable. Notice, for example the names of the
variables. All of the estimates of the geographically weighted mean end with _LM
which stands for local mean. Similarly the estimates of geographically weighted
standard deviation end with _LSD for local SD.

7.4.3.1 Mapping gwss results

How do we see the results? Try looking at our result:

names(atl.ss)

## [1] "SDF" "vars" "kernel" "adaptive" "bw" "p"
## [7] "theta" "longlat" "DM.given" "sp.given" "quantile"

summary(atl.ss)

## Length Class Mode
## SDF 345 SpatialPolygonsDataFrame S4
## vars 5 -none- character
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## kernel 1 -none- character
## adaptive 1 -none- logical
## bw 1 -none- numeric
## p 1 -none- numeric
## theta 1 -none- numeric
## longlat 1 -none- logical
## DM.given 1 -none- logical
## sp.given 1 -none- logical
## quantile 1 -none- logical

There are many sub-objects within the main result object. But the first one,
always called SDF has class SpatialPolygonsDataFrame. The is basically the
sp version of a polygon spatial file. If you examine it more closely (e.g. try
summary(atl.ss$SDF)) to see what happens) you will see that it has the infor-
mation we need to make maps (e.g. it is a spatial object with attribute data).

First, let’s map geographically-weighted median value for each of the statistics:

# Map geographically-weighted Median
tm_shape(atl.ss$SDF) +
tm_fill(c('pctPOV_Median', 'pctNOHS_Median', 'pctMOVE_Median', 'pctOWNER_OCC_Median'),

style = 'quantile') +
tm_borders()
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pctPOV_Median
0.042 to 0.073
0.073 to 0.138
0.138 to 0.188
0.188 to 0.284
0.284 to 0.392

pctNOHS_Median
0.004 to 0.013
0.013 to 0.029
0.029 to 0.052
0.052 to 0.070
0.070 to 0.105

pctMOVE_Median
0.096 to 0.157
0.157 to 0.175
0.175 to 0.190
0.190 to 0.209
0.209 to 0.311

pctOWNER_OCC_Median

0.192 to 0.365
0.365 to 0.448
0.448 to 0.528
0.528 to 0.617
0.617 to 0.839

And we can also examine the local variation or diversity in values by mapping
the geographically-weighted IQR

# Map geographically-weighted IQR
tm_shape(atl.ss$SDF) +
tm_fill(c('pctPOV_IQR', 'pctNOHS_IQR', 'pctMOVE_IQR', 'pctOWNER_OCC_IQR'),

style = 'quantile') +
tm_borders()
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pctPOV_IQR
0.027 to 0.078
0.078 to 0.106
0.106 to 0.135
0.135 to 0.185
0.185 to 0.337

pctNOHS_IQR
0.007 to 0.021
0.021 to 0.031
0.031 to 0.044
0.044 to 0.070
0.070 to 0.196

pctMOVE_IQR
0.049 to 0.075
0.075 to 0.088
0.088 to 0.099
0.099 to 0.120
0.120 to 0.219

pctOWNER_OCC_IQR

0.070 to 0.228
0.228 to 0.270
0.270 to 0.319
0.319 to 0.399
0.399 to 0.666

Remember, places with higher IQR have larger local differences in the values.
Are the places of high variability similar to, or different from, the places with
high median values?
You can now repeat the above code for the ICE_INCOME_all variable, and also
repeat all variables looking at the mean and SD rather than the median and
IQR. Is there evidence that the local mean and local median are different?

7.4.4 Calculating pseudo p-values for smoothed estimates

The motivation for much of disease mapping is the detection of spatial hetero-
geneity and spatial dependence in epidemiologic data. Spatial heterogeneity in
a statistical parameter means that values are truly different in some locations
compared to others. Spatial dependence in a random variable means that the
values in one location tend to be more correlated with values in nearby locations
than with values in distant locations.
A related idea is that of spatial stationarity which implies that the value for
a summary of data (e.g. the spatially-local mean) is location independent. In
other words if you divided your study region into 10 equal-sized sub-regions,
the mean value would be approximately the same in each. In contrast, spatial
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non-stationarity means that the local summaries are location-dependent. For
example the estimate of the spatially local mean could be different in one sub-
region compared to another.

Note that spatial non-stationarity implies both heterogeneity in the parameter
of interest (values are not the same everywhere) and spatial dependence of
the observations (near values are more correlated than distant values). If there
were only heterogeneity, but not dependence we would expect, on average, that
local summaries of statistics would still be stationary.

We can restate some of the above definitions in the form of testable hypotheses to
evaluate in our disease mapping analysis. First note that in this example we have
multiple candidate random variables (e.g. pctPOV, pctMOVE, ICE_INCOME_all,
…), as well as multiple candidate statistical parameters (e.g. the mean, median,
SD, IQR, …). To hone in on the questions at hand, let us assume we are inter-
ested in describing the mean value of the random variable pctPOV. The use of
kernel density functions applied to spatial data are particularly well suited for
testing of spatial stationarity versus spatial non-stationarity of statistic param-
eters.

As noted above, the question about spatial stationarity hinges largely on the
presence of spatial dependence versus spatial independence of observed values.
Therefore, under a null hypothesis, 𝐻0 ∶, we might posit that the observed values
of pctPOV are independent of one another, and therefore any spatially local mean
estimate of pctPOV would be location independent (e.g. the summary in one
location would, on average, be the same as the summary in another location).
The alternative hypothesis, 𝐻𝐴 ∶, is that the values of pctPOV are spatially
dependent and therefore any spatially local mean estimate of pctPOV could be
location dependent (e.g. not equal to a single global value, nor to every other
location-specif value).

How can we test this hypothesis? As we have seen previously, hypothesis testing
with spatial data is made more challenging by the complex structure of the data,
and difficulty making plausible assumptions under conventional statistical rules.

One effective empirical solution to the complexity is to carry out Monte Carlo
permutation testing of the null hypothesis. The idea with permutation testing, is
that we can empirically simulate what we believe the data would look like under
the null distribution. Then we can compare our observed data to the simulated
null distribution to describe how unusual our observations were, given what
would have been expected due to chance alone.

Permutation testing is particularly well-suited to questions about spatial inde-
pendence versus spatial dependence, because it is not hard to conceive of what
it means to have data values independent of one another. For example, imagine
that our random variable, pctPOV has been measured on 345 units, as it has
here. Under the null hypothesis of spatial independence, the geographic location
of the measures is irrelevant. For example if we took the exact same vector of
𝑛 = 345 values of pctPOV and randomly changed their geographic location, it
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should not matter because we assume, under the null, that geographic location
is irrelevant. If we were to randomly reassign the vector of 𝑛 = 345 values of
pctPOV to different locations many, many times we would begin to see a distri-
bution of arrangements under the null hypothesis, e.g. spatial independence.

What is permutation testing doing?

– First, the measure of interest in this case is the
geographically-weighted average of a variable, say pctPOV.
So each region will have its own spatially weighted average
calculated as the weighted average of it’s own neighbors (as
defined by the kernel).

– Under the null, we assume that the value of an individual
region’s pctPOV is independent of the value of the value in
its neighbors. Therefore, the permutations are an empirical
way to approximate this null assumption by randomly re-
assigning the known values to different geographic locations.

– Each time we randomly reassign a set of locations, we repeat
the process of creating the geographically weighted average
of the variable, e.g. pctPOV. After doing this a lot of times,
we have a distribution of what the geographically weighted
pctPOV for each individual region would look like if the null
(spatial independence) were true.

– We can then compare our single observed realization of the
geographically-weighted pctPov in each region to the long
list of hypothetical values (under the null) to see how typical
or unusual our observed data are. Essentially the pseudo p-
value is just the rank-ordered percentile of the observed data
in relation to the range of values under the null.

– The number of random permutations guides the precision
of our eventual pseudo-p-value. Our p-value could theoret-
ically be smaller if we have more null permutations. For
instance if we compare 𝑛 = 1 observed realization of the
data with 𝑛 = 99 null permutations the very most extreme
statement we could make is that our data is more extreme at
𝑝 = 1

100 = 0.01 level. In contrast if we had 𝑛 = 1 observed
realizations and 𝑛 = 999 random permutations under the
null the most extreme our data could be is 𝑝 = 1

1000 = 0.001.

This is what the function gwss.montecarlo() does. In the specific context
of the geographically weighted summary statistics, the function follows a 3-step
process:

1. First it will randomly reassign the location of variables of interest 𝑛 times
(where 𝑛 specified by user, but typically reasonably large)



224CHAPTER 7. DISEASE MAPPING IV: KERNEL DENSITY ESTIMATION

2. Second, for each random permutation of the random variable
(e.g. pctPOV), the summary statistic (e.g. the spatially-weighted lo-
cal mean of pctPOV) is calculated.

3. Finally, the observed results (e.g. the spatially-weighted mean of pctPOV
calculated using our original gwss()) is compared to the null distribution.
If we calculated 𝑛 = 999 random permutations, then we would have 𝑛 =
1000 versions of the summarized statistic, including the observed. The
pseudo p-value is calculated as the number of times for each spatial unit
that the observed value is more extreme than what would be expected
under the null. For example if we defined extreme as being something
that happens fewer than 5% of the time by random chance alone, then we
might classify our observed value as extreme (and thus significant) if our
observed value was either less than the lower 2.5% of the null values, or
greater than the upper 97.5% of the null values.

It might sound like a lot of things are happening. Mechanically it is a rela-
tively straightforward procedure, but it can be time consuming, particularly
when you have a lot of permutations of the null. Here we carry out the Monte
Carlo permutation test for geographically-weighted statistics on a single vari-
able, pctPOV. Most of the arguments are familiar, but we now must specify how
many permutations or simulations we wish by using the arguments nsim =. On
my computer, it took less than 1 minute to run with 𝑛 = 499 permutations.
Note that because we request 𝑛 = 499 simulations, when combined with our
observed data, there will be 𝑛 = 500 total values of the spatially-weighted mean
value of pctPOV to compare.

p.val <- gwss.montecarlo(atl, vars = 'pctPOV',
adaptive = T,
bw = 35,
nsim = 499)

summary(p.val)

## pctPOV_LM pctPOV_LSD pctPOV_LVar pctPOV_LSKe
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0020
## 1st Qu.:0.2480 1st Qu.:0.2480 1st Qu.:0.2480 1st Qu.:0.2460
## Median :0.5040 Median :0.5040 Median :0.5040 Median :0.4920
## Mean :0.5001 Mean :0.5002 Mean :0.5002 Mean :0.4992
## 3rd Qu.:0.7600 3rd Qu.:0.7480 3rd Qu.:0.7480 3rd Qu.:0.7580
## Max. :0.9980 Max. :0.9980 Max. :0.9980 Max. :0.9980
## pctPOV_LCV
## Min. :0.0020
## 1st Qu.:0.2460
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## Median :0.5180
## Mean :0.5013
## 3rd Qu.:0.7540
## Max. :0.9980

You can now examine the result. First you might find that what is returned is
of class matrix. You will notice that there are columns for all 5 of the primary
summary statistics estimated by gwss

• _LM which is the local mean
• _LSD which is the local standard deviation
• _LVar which is the local variance
• _LSKe which is the local skewness
• _LCV which is the local coefficient of variation

The numbers in each column are values that range from 0 to 1. These numbers
are percentiles reflecting the rank location of the single spatially weighted local
mean of pctPOV from the observed data as compared to the 𝑛 = 499 versions
where spatial location was randomly assigned.

To calculate a 2-side pseudo p-value at the conventional 0.05 threshold, we would
be interested in which census tracts the observed data were either in the very
lowest 2.5% or the very highest 2.5% of the null distribution. In other words we
could ask which census tracts were observed to have a spatially-weighted local
mean value that is extreme as compared to what would happen by chance alone.

NOTE:
The percentile values come from a specific set of randomly dis-
tributed simulations. Repeating the procedure could produce
slightly different values from what is printed above simply due
to random variation. But based on the Central Limit Theorem,
we believe that as the number of the simulations grows larger, the
more consistent the results will be.

However the result returned in the object p.val is not easy to use just as it
is. How could we convert it into something we could map? Below, we can test
which census tracts were extreme under the above definition, and then make a
new spatial object that includes only significant tracts.

# First, create TRUE/FALSE vectors testing whether column 1 (pctPOV_LM) is extreme
# I am using 2 significance levels: 90% and 95%
sig95 <- p.val[, 1] < 0.025 | p.val[, 1] > 0.975
sig90 <- p.val[, 1] < 0.05 | p.val[, 1] > 0.95
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# Second create a spatial object that ONLY contains significant tracts
atl.sig95 <- atl[sig95, ] %>%
aggregate(dissolve = T, FUN = length) # this is sp code to merge adjacent tracts

atl.sig90 <- atl[sig90, ] %>%
aggregate(dissolve = T, FUN = length)

In the code above we use the sp function aggregate() in a similar
way we might use the dplyr function group_by() with sf class
data: to merge or dissolve adjacent polygons that share a value.
In this case we are merging census tracts that have p-values below
a certain threshold in order to create a bold outline on the map.
The aggregate() function requires an action or function (FUN)
to be applied to the groups of tracts being merged together. We
do not care about the output of the function, but just need to
put something in. Somewhat arbitrarily I choose the function
length because it works well for both numeric and character data.
However, we will not pay attention to the value returned; instead
we only care about the shape of the resulting polygon.

Now we can use the results from above to create a map summarizing our evidence
in relation to the null hypothesis that the geographically-weighted mean value
of pctPOV is stationary, against the alternative hypothesis that at least some
locations have significantly more extreme local values than expected under the
null.

tm_shape(atl.ss$SDF) +
tm_fill('pctPOV_LM',

style = 'quantile',
title = 'Local Average % Poverty') +

tm_borders() +
tm_shape(atl.sig90) +
tm_borders(lwd = 2, col = 'blue') +

tm_shape(atl.sig95) +
tm_borders(lwd = 2, col ='red') +

tm_add_legend(type = 'line',
labels = c('p < 0.05', 'p < 0.10'),
col = c('red', 'blue'))
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Local Average % Poverty
0.051 to 0.106
0.106 to 0.162
0.162 to 0.210
0.210 to 0.296
0.296 to 0.395

p < 0.05
p < 0.10

What we see is that the visual inspection of the geographically-weighted mean of
pctPOV suggests that there is a great deal of spatial heterogeneity and apparent
spatial non-stationarity. However, the permutation test suggests that only a
few regions in far North Fulton and in West Atlanta have values that are more
extreme than we might expect under an assumption of spatial independence.

NOTE:
It is important to remember the hypothesis we were testing! This
is not a test of whether the poverty rate is zero, nor a test of
whether the poverty rate is different in some specific census tracts
compared to others.
Instead, this is specifically a test of whether there is spatial depen-
dence in the data that would give rise to unexpectedly extreme
local measures under the assumptions of the KDE with specified
neighbors.
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7.4.5 Estimating geographically-weighted bivariate statis-
tics

The final bits of information we will examine from the geographically-weighted
summary statistics function gwss() are the bivariate correlations and covari-
ances. Any time two or more variables are supplied to the gwss() function,
it will automatically calculate the correlation coefficients (both Pearson and
Spearman), as well as measures of covariance, for every pair of variables.
Up until now, we have seen how the KDE function can produce a smoothed
estimate of the local mean, median, SD, etc. But it can also show whether any
correlation between pairs of variables is spatially stationary (the same every-
where), or spatially non-stationary (varies by location).

tm_shape(atl.ss$SDF) +
tm_fill(c('Spearman_rho_pctPOV.pctNOHS',

'Spearman_rho_pctPOV.pctMOVE',
'Spearman_rho_pctPOV.ICE_INCOME_all'),

style = 'quantile') +
tm_borders()

Spearman_rho_pctPOV.pctNOHS

−0.314 to 0.376
0.376 to 0.506
0.506 to 0.630
0.630 to 0.727
0.727 to 0.931

Spearman_rho_pctPOV.pctMOVE

−0.339 to 0.179
0.179 to 0.319
0.319 to 0.423
0.423 to 0.550
0.550 to 0.761

Spearman_rho_pctPOV.ICE_INCOME_all

−0.946 to −0.883
−0.883 to −0.856
−0.856 to −0.826
−0.826 to −0.753
−0.753 to −0.312
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Two things are illustrated by these maps.

1. First, it appears that the magnitude of correlation among these pairs of
variables is larger in some areas and smaller in others.

2. The second, is that the spatial patterns of correlation between pctPOV and
two other variables are distinct. In other words the areas where correlation
is relatively stronger or weaker are not the same.

We might once again ask whether these differences are more extreme than we
might expect under a null hypothesis of spatial independence and spatial sta-
tionarity.

Previously we only conducted the Monte Carlo permutation test on a single vari-
able, pctPOV. But if we provide two or more variables to the gwss.montecarlo()
function, we will get pseudo p-values for both univariate and bivariate statistics.
NOTE this takes more time because there is more work for the computer to
do. The code below took a little over 1-minute on my computer.

p.val <- gwss.montecarlo(atl, vars = c('pctPOV', 'pctMOVE'),
adaptive = T,
bw = 35,
nsim = 499)

You can use summary() or dimnames() to figure out which column you want.
We want to get the permutation p-value for Spearman_rho_pctPOV.pctMOVE,
which is in the 13th column of the matrix.

# First, create TRUE/FALSE vectors testing whether column 1 (pctPOV_LM) is extreme
# I am using 2 significance levels: 90% and 95%
sig95 <- p.val[, 13] < 0.025 | p.val[, 13] > 0.975
sig90 <- p.val[, 13] < 0.05 | p.val[, 13] > 0.95

# Second create a spatial object that ONLY contains significant tracts
atl.sig95 <- atl[sig95, ] %>%
aggregate(dissolve = T, FUN = mean)

atl.sig90 <- atl[sig90, ] %>%
aggregate(disolve = T, FUN = mean)

Now we can map the correlation between pctPOV and pctMOVE along with the
significance test.
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tm_shape(atl.ss$SDF) +
tm_fill('Spearman_rho_pctPOV.pctMOVE',

style = 'quantile',
title = 'Local correlation Poverty\n& Residential instability') +

tm_borders() +
tm_shape(atl.sig90) +
tm_borders(lwd = 2, col = 'blue') +

tm_shape(atl.sig95) +
tm_borders(lwd = 2, col ='red') +

tm_add_legend(type = 'line',
labels = c('p < 0.05', 'p < 0.10'),
col = c('red', 'blue'))

Local correlation Poverty
& Residential instability

−0.339 to 0.179
0.179 to 0.319
0.319 to 0.423
0.423 to 0.550
0.550 to 0.761

p < 0.05
p < 0.10
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Table 7.2: Vocabulary for Week 7

Term Definition

Bandwidth

A measure of the width or spatial
extent of a two-dimensional
kernel density estimator. The
bandwidth is the key to
controlling how much smoothing
occurs, with larger bandwidths
producing more smooth surfaces,
and smaller bandwidths
producing less smooth surfaces

Bandwidth, adaptive

An adaptive bandwith means the
width or search radius of the
spatial kernel density estimator
varies or adapts through space,
usually to maintain a constant
number of points within the
window. The result is that in
areas with few points there is
more smoothing, whereas in
areas with many points there is
more granularity

Bandwidth, fixed

A fixed bandwidth means the
width or search radius of the
spatial kernel density estimator is
constant (fixed) for the full study
region

Geographic-weighting

A method for calculating
summary weighted statistics by
relying on a kernel density
estimator to describe the weights
in local summaries.

Homogenous Poisson Point
Process

A spatial statistical assumption
that the count of events in an
arbitrarily small area is
distributed Poisson with mean
lambda for all regions

Inhomogenous Poisson Point
Process

A spatial statistical assumption
that the count of events in an
arbitrarily small area is
distributed Poisson with mean
lambda that varies through space
as a function of the underlying
population at risk. This is true
for most spatial epidemiology.

Kernel density estimator

A non-parametric way to
estimate the probability
distribution function of a random
variable. In spatial (e.g. 2-d)
kernel density estimation, it is a
way to describe the spatially
continuous variation in the
intensity of events (points).

Spatial density

A standardized metric of spatial
intensity. Related to a
probability density function, it is
a proportionate indicator of how
much of the total events occur in
a specific region. In kernel
density estimation, the density
surface integrates (or sums) to 1
across a study region.

Spatial intensity

A measure of the ratio of events
at specific points to a unit of
area. Spatial intensity describes
the spatially continuous surface
of event occurrence. In kernel
density estimation, a spatial
intensity surface integrates (or
sums) to the sample size across a
study region.

Stationarity vs
non-stationarity

Many statistics assume that the
parameter, estimate, or property
is constant across sub-units. For
example if we take the average
height of a population, under
stationarity we would assume
that average applies equally to
sub-populations. In contrast,
non-stationarity implies the
parameter, estimate, or property
varies across sub-groups. In
spatial analysis stationarity is an
assumption of homogeneity, and
non-stationarity allows for
heterogeneity.
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Chapter 8

Spatial Structure and
Clustering I: Moran’s I and
LISA

8.1 Getting Ready

8.1.1 Learning objectives

Table 8.1: Learning objectives by weekly module

After this module you should be able to…
Compare and contrast the statistical, epidemiologic, and policy meaning of
geospatial ’clustering’ of disease
Calculate and visually summarize global and local tests for spatial clustering

8.1.2 Additional Resources

• Waller L, Gotway C. Applied Spatial Statistics for Public Health Data.
Hoboken, NJ: John Wiley & Sons, Inc; 2004. (Available electronically via
library)

233
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8.1.3 Important Vocabulary

8.2 Spatial Thinking in Epidemiology

The notion of clusters of disease as a fundamental clue for epidemiologists
harkens back to John Snow’s Cholera map, where the appearance of excess
cases near the Broad Street pump pointed to an effective intervention, even in
the absence of etiologic knowledge about causation. In other words, the ap-
peal of cluster analysis is that we can identify patterns that potentially inform
action.
Of course ‘clustering’ or grouping of health status in one group compared to
another is the basis for all associational or etiologic epidemiology. We are inter-
ested in whether disease occurs more or less often in one group versus another
(e.g. exposed versus unexposed). We could say that lung cancer clusters among
smokers, especially as compared to non-smokers.
So it is natural to extend this idea to an explicitly spatial frame, since we often
find populations in geographically-referenced groups share or spread exposures
and resources that affect the health of those populations.

8.2.1 Two big questions…

In spatial epidemiology most questions boil down to two fundamental questions
and their related broad hypotheses:

1. Is the health of population (measured as risk, rate, prevalence, etc) spa-
tially homogenous or constant (𝐻𝑜 hypothesis), or is health spatially het-
erogeneous or variable (𝐻𝑎 hypothesis)?

2. Are the occurrences of health events, or the value of health parameters
spatially independent (𝐻𝑜 hypothesis) or are the events or values spatially
dependent or clustered in space, given variation in the population at risk
(𝐻𝑎 hypothesis)?

The first question has been the driving question for disease mapping, and
in fact if there were complete disease homogeneity or constant risk, spatial epi-
demiology would not be a fruitful endeavor. But as we saw over the past several
weeks, the question of homogeneity versus heterogeneity is not so simple. For
instance we had several concerns which drove many of the statistical methods
learned to date:

• True heterogeneity versus spurious heterogeneity arising from statistical
imprecision and instability due to small numbers (e.g. either very rare
outcomes producing small numerators, or small populations producing
small denominators).
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– Statistical disease mapping strategies including Empirical Bayes, Full
Bayes modeling, and kernel density estimation

• Meaningful heterogeneity versus heterogeneity driven by spurious or nui-
sance factors including confounding by other factors

– Standardizing expected counts or rates to the distribution of a covari-
ate (e.g. age) is one strategy for addressing this spurious or nuisance
patterning

• Biased estimates of spatial risk patterns derived from the spatial scale
(e.g. size of aggregating units) and spatial zoning (e.g. particular arbi-
trary boundaries used), as described in the modifiable areal unit problem
(MAUP).

– The best strategy to avoid MAUP related bias is to rely on meaning-
ful units of analysis. In the absence of clearly meaningful aggregation
approaches, comparing sensitivity of results to alternate scale or zon-
ing is useful

The second question is seemingly similarly straightforward, but upon further
investigation shares as many or more caveats and concerns as seen above. On
the surface there are numerous statistical tests designed to detect clusters of
events, or the presence of spatial autocorrelation of continuous value. However
reliable and valid detection of epidemiologically meaningful spatial clusters is
threatened by all of the above concerns (e.g. instability due to sparse data;
spurious patterns due to nuisance factors), as well as several specific to spatial
dependence testing including:

• Defining a meaningful alternative hypothesis, including the specification
of spatial weights or neighbors appropriate to the process at hand

• Multiple comparisons implicit in any local test of dependence or autocor-
relation

• Conceptualizing the underlying process as a function of the spatial scale
(e.g. is a ‘cluster’ due to diffusion or spread from one region to another,
or is it because all the measured regions share the same exposure?)

8.2.2 Why does structure or clustering matter?

The spectrum of epidemiologic investigation spans from purely descriptive ac-
tivities on one end to purely etiologic and causal on the other. In the middle is
a great deal of room for hypothesis generating, predictive analyses, and applied
cluster analysis as part of disease response. Disease mapping can serve both
descriptive and hypothesis generating purposes. Formal spatial cluster analysis
is employed for the following reasons:
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• Exploratory cluster detection and descriptive analysis of disease
risk/rate variation when this has not already been established. This can
be a crude tool for generating hypotheses about risk factors for health.

• Public health response to outbreak or cluster concern raised from
citizen complaints, or surveillance. This includes efforts to definitively
identify clusters of disease such as cancer, birth defects, or geographically-
limited infectious disease outbreaks.

• Advancing etiologic and population health knowledge by testing
for excess geographic variation above and beyond that explained by known
risk factors. This can suggest novel spatially-patterned risk factors, un-
measured confounding, spatial selection processes, or complex spatially-
referenced interactions.

For health outcomes that vary over time and space, it is possible that there is
clustering of health events in space, during specific time periods, and possibly
in both dimensions simultaneously.

Therefore, spatial cluster analysis is but one tool in the broader epidemiologic
process of understanding the biological, behavioral, and social production of
population health, and by extension of acting to promote health and prevent
disease. The bottom line from an epidemiologic (or population health) per-
spective, is that the wide variety of sophisticated statistical tools can, when
appropriately used, advance our insight and knowledge but do not on their own
substitute for the critical thinking and triangulation necessary for robust and
impactful epidemiologic understanding.

8.2.3 Making meaning of hypotheses in spatial structure
testing

To make meaningful inference about spatial structure and the presence, absence,
location, and magnitude of spatial clusters in health parameters, it is critical to
have clarity about the question being asked, and the implied null and alternative
hypotheses.

As a starting point, there are three broad categories for testing for the presence
of spatial clustering or dependence:

1. Global dependence refers to a single test statistic summarizing a pat-
tern evident across the entire dataset. Below, the global Moran’s I statistic
is one example of such an approach. Such tests are especially useful when
comparing ‘models’ that aim to explain spatial patterns; changes in the
strength of global autocorrelation across competing approaches can pro-
vide clues about the drivers or generators of dependence in the data
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2. Local dependence is a search for the existence of sub-regions in the
study area that are more clustered or auto correlated than expected by
chance alone. While a global test returns only a single value of a test
statistic, local tests of clustering return a separate test statistic for each
unit of analysis. This strategy can be useful to identify unusual patterns
where high or low rates group together; by extension searches for local
dependence generate hypotheses about explanations for disease variation
in populations

3. Focal clustering is a targeted search for excess risk of disease in a pre-
defined region. Typically a focal test is defined in relation to a putative
hazard, such as a toxic emitter.

To effectively conduct a meaningful cluster analysis, Waller & Jacquez (1995)
suggest a framework for thinking about components of statistical testing for
clustering in spatial epidemiology.

1. Statistically we can define null hypotheses which describe expectations of
spatial patterns of points or aggregated risks/rates assuming either spa-
tially constant risk (spatial homogeneity in intensity) or spatial indepen-
dence (spatially random distribution of values across units). We then test
our data for evidence that our observed data departs from the expectations
under the null.

2. Epidemiologically, the questions best-suited for spatial cluster analysis
concern the presence of, and ultimately the reasons for, epidemiologically
unusual spatial patterns of disease occurrence. So, what makes a pattern
epidemiologically unusual or interesting? In other words when might a
statistical test be significant but not helpful, at least from the point of
view epidemiologic investigation?

One challenge is that cluster testing strategies tend to be calibrated to identify a
particular cluster morphology, but clusters can occur in variety of shapes, sizes,
or intensities. For example some detect boundaries (e.g. zones of rapid change;
or boundary overlap between exposure and outcome), other detect outliers,
and some use neighbors, circles or ellipses to define the index sub-regions for
evaluation. The two cluster statistics we will introduce this week rely on a
‘template’ of clustering defined by the choice of the unit of analysis (e.g. the
specific scale or zoning at which data are aggregated) and the definition of the
neighbors.

As we move forward, there are some additional concepts that are worth defining
more fully:

https://journals.lww.com/epidem/Abstract/1995/11000/Disease_Models_Implicit_in_Statistical_Tests_of.4.aspx
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Feature Description
Null hypothesis A statement about what disease pattern is expected in

the absence of clustering. A constant risk hypothesis
from disease mapping is one example, but spatial
independence is another.

Null spatial
model

This can be theoretical or computational. Theoretical
models include assumptions about parametric
probability distributions for how data are generated
under the null. For example asymptotic Gaussian or
Poisson independent distributions. However, because
large samples are rare and real world data may not
follow parametric forms, computational strategies for
describing the null can be used. These include the
permutation testing we’ve seen in previous weeks.

Alternative
hypothesis

While our alternative to the constant risk hypothesis
was simply that risk was heterogeneous (an omnibus
rejection of the null), for spatial dependence the
alternative is shaped by the choice of spatial neighbors
or spatial weights. Each neighbor specification
represents a slightly different alternative hypothesis.

Cluster statistic There are numerous cluster statistics including the
Moran’s I statistic and the Local Moran’s LISA statistic;
we will discuss two this week and a couple next week,
but many more exist.

Distribution of the cluster statistic under the null spatial model Just
as we needed a null spatial model that was theoretical or computational, we
also need to characterize the distribution of the cluster statistic under the null
in order to compare with the observed data

8.3 Spatial Analysis in Epidemiology

The choice of cluster statistic depends greatly on the nature of the spatial data
and parameters of interest. For example different strategies would be used if
data were point referenced versus aggregated into areal units, and differences if
the parameter or statistic of interest is naturally a continuous value which might
be conceived of as normally distributed versus a numerator and denominator
pairing representing a Poisson rate.

In this section we will introduce the Global and Local Moran’s I statistics for
clustering of very low birthweight in Georgia counties. Moran’s I typically makes
sense with areal data. While originally developed for normally distributed data,
extensions to Poisson distributed data are available.
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8.3.1 Packages & Data

In addition to the familiar packages, we will use packages with specific clus-
ter statistics including DCluster and spdep have functions relevant for spatial
cluster analysis.

pacman::p_load(tidyverse, # Provides data manipulation and piping functionality
sf, # Read/write spatial data
spdep, # Functions for creating spatial weight, spatial analysis
DCluster, # Package with functions for spatial cluster analysis
tmap) # Mapping functionality

In terms of data, we will continue to use the Georgia very low birth weight
(VLBW) data, with counts aggregated to the scale of county.

vlbw <- st_read('ga-vlbw.gpkg') %>%
mutate(rate = VLBW / TOT )

r <- sum(vlbw$VLBW) / sum(vlbw$TOT)
vlbw$expected <- r*vlbw$TOT

8.3.2 Global Moran’s I

There are numerous tests of global spatial auto-correlation including Geary’s 𝐶
test, the Getis-Ord 𝐺∗ statistic and others. We will focus on the most commonly
used, the Moran’s I statistic. As discussed in the lectures, the Moran’s I statistic
is similar to a Pearson’s correlation coefficient, in that it takes the product of
differences of two measures from their respective mean to quantify dependence
or similarity. In the case of Pearson’s correlation coefficient, the two measures
(e.g. 𝑥, 𝑦) are of two constructs (e.g. one variable, 𝑥 and a second variable, 𝑦).
However in the case of Moran’s I, the two measures are of the same construct
but contrast the index county (e.g. 𝑥𝑖), as compared to the average value of
that county’s neighbors (e.g. 𝑤𝑖𝑗𝑥𝑗 where 𝑤𝑖𝑗 = 1 for regions that are neighbors,
and 𝑤𝑖𝑗 = 0 otherwise. Thus, the spatial weights matrix 𝑤𝑖𝑗 encodes the spatial
relationships between places.

This is the Moran’s I statistic:

𝐼 =

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1
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In the formula 𝑖 references the count of regions from 1 ∶ 𝑛, the weights matrix,
𝑤𝑖𝑗 represents the relatedness for pairs of regions. For example, if regions are
neighbors, the weight is 1, if not the weight is 0. ̄𝑌 is the mean value of the
parameter.

Global Moran’s I considers values observed in pairs. If adjacent pairs are simul-
taneously above (or simultaneously below) average, it contributes to positive
value of test statistic. If one region is above average and the other is below, that
contributes to a negative value (e.g. opposites or an inverse correlation).

The null hypothesis of the Moran’s I is that measures are spatially independent,
and in this setting the test statistic would be zero. However if there is posi-
tive spatial autocorrelation, the test statistic will be positive (but generally not
greater than 1), and suggestive that neighboring counties are more similar than
distant counties. In unusual circumstances, the Moran’s I test statistic can be
negative (e.g. when index county is opposite all of its neighbors).

REMEMBER:
The null assumption of spatial independence does not imply that
there is spatial homogeneity or a constant risk. There can be very
different rates between counties and still have spatial indepen-
dence. Rejecting the null of spatial independence suggests that
the high and low rate regions have a particular spatial pattern or
structure.

First we will set up a spatial weights matrix to represent a starting alternative
hypothesis defined by local spatial relationships. Only a Queen contiguity rela-
tionship is specified here, although other definitions would represent additional
alternative hypotheses as to the assumption of spatial independence. Notice that
for this function, we need the neighbor object (of class nb) to be converted to
another format called a neighborhood list with spatial weights (e.g. class listw).

qnb <- poly2nb(vlbw)
q_listw <- nb2listw(qnb, style = 'W') # row-standardized weights

8.3.2.1 Global Moran’s I for normally distributed variable

There are many kinds of measures of variables on which you might choose to
carry out spatial auto-correlation analysis. For example, measures of epidemi-
ologic exposures (access to care, environmental toxicants, built environment)
might be represented as continuous, normally distributed values. In the spatial
regression module we will discuss the assessment of spatial autocorrelation in
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multivariable regression model residuals as another use (e.g. to diagnose resid-
ual spatially-structured errors); these would also be expected to be normally
distributed.

The following function, moran.test(), is from the package spdep, and takes a
single continuous value. In our case where the parameter of interest is a risk,
this first version of the Moran’s I statistic treats each observed risk value as
equal, without considering the differences in sample size among counties.

The function allows consideration of either a theoretical null spatial model
(e.g. assumes the variance of 𝐼 statistic is consistent with an asymptotic normal
distribution specified by the options randomization = FALSE), or for the null
spatial model to be computational (e.g. assume variance of the 𝐼 statistic is
not normal, and will be empirically approximated through random permuta-
tions). Below we specify the computational null by indicating randomisation
= TRUE. You can read more about the arguments and information returned by
this function by looking at the document help.

moran.test(vlbw$rate,
listw = q_listw,
randomisation = T)

##
## Moran I test under randomisation
##
## data: vlbw$rate
## weights: q_listw
##
## Moran I statistic standard deviate = 4.5281, p-value = 2.975e-06
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.214197175 -0.006329114 0.002371817

The Moran’s I statistic of 0.21, with a very small p-value suggests that there
is evidence of moderate spatial autocorrelation, and that this result is highly
statistically significant.

To visualize how the mortality rate for each county compares to each county’s
neighbors we can use moran.plot().

moran.plot(x = vlbw$rate,
listw = q_listw,
labels = vlbw$NAME,
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xlab = 'VLBW Risk',
ylab = 'Spatially-lagged mean risk')
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This plot demonstrates the correlation or relationship between each county’s
VLBW risk (x-axis) against the average of the risk for that county’s spatial
neighbors (y-axis; assuming Queen contiguity). The dotted lines divide the
plot into quadrants representing above and below the mean value of both the
rate, and the spatially-lagged rates of neighbors. The solid line is the slope of
correlation (it corresponds to the 0.21).

Thinking about each quadrant in turn can help make sense of this plot, and of
the interpretation of the spatial autocorrelation statistic. For example, look at
Randolph county (labeled in the upper-right quadrant). This county is charac-
terized by having higher than average VLBW risk than the state (e.g. it is to
the right side of average on the x-axis), and also the average VLBW risk among
Randolph county’s Queen contiguity neighbors is higher than average (e.g. it is
above the average on the y-axis).

While none are labeled, there are also counties in the left lower quadrant. These
points represent individual counties with lower than average risk of VLBW,
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surrounded by neighboring counties that also have lower (on average) risk.

Finally there are some points in the ‘off-diagonal’ quadrants: in the upper-left
are counties where their own risk is lower than average (e.g. small values on the
x-axis), but they are surrounded by counties that have (on average) higher than
average risk (e.g. large values on the y-axis).

While these are clues about where clustering occurs, remember that the global
Moran’s I provides us with only one statistical test value for the entire state
of Georgia. So the question being asked is: “Is there spatial autocorrelation
in VLBW risk in Georgia” and the answer to the question is “Most likely,
yes”. However this test did not explicitly quantify the likelihood of any specific
location where those clusters might be.

8.3.2.2 Global Moran’s I for Poisson-distributed rate data

While many measures may be appropriately assessed under the normality as-
sumptions of the previous Global Moran’s I, in general disease rates are not best
assessed this way. This is because the rates themselves may not be normally
distributed, but also because the variance of each rate likely differs because of
different size population at risk. For example the previous test assumed that we
had the same level of certainty about the rate in each county, when in fact some
counties have very sparse data (with high variance) and others have adequate
data (with relatively lower variance).

In short, that is one reason we do not use Gaussian assumptions in analyzing
health data, instead using binomial, Poisson, and other distributions to model
disease occurrence. Luckily, there are extensions of the global Moran’s I that
treat our measures as Poisson (or negative binomial) rather than normal.

The package DCluster has several wrapper functions which work with the
moran.test() function in spdep but accommodate these alterations. As usual,
it would be wise to use ?moranI.test() to look at the help documentation for
further detail.

Note, the addition of arguments n=159 and S0 = Szero(q_listw) are now re-
quired for this function. The n= argument specifies the number of regions,
whereas the S0 = argument calculates the global sum of weights. More specif-
ically the helper function Szero() calculates several constants that are needed
by various autocorrelation statistics calculations.

Also note that instead of using the calculated rate, we specify the county of the
outcome and the log(expected) as an offset. We can also specify the number
of random simulations of the null hypothesis to run in order to calculate the
empirically p-value.
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moranI.test(VLBW ~ offset(log(expected)),
data = vlbw,
model = 'poisson',
R = 499,
listw = q_listw,
n = 159,
S0 = Szero(q_listw))

## Moran's I test of spatial autocorrelation
##
## Type of boots.: parametric
## Model used when sampling: Poisson
## Number of simulations: 499
## Statistic: 0.2141972
## p-value : 0.002

Not surprisingly, the Moran’s I statistic itself is virtually identical to what we got
in the previous example (𝐼 = 0.21). While the empirical p-value of 𝑝 = 0.002 is
still significant at 𝛼 = 0.05, it is substantially larger than the p-value calculated
by the Moran’s I test run under the assumption of normality. This reflects
the variation in precision among counties, that is now at least partially being
accounted for.

8.3.2.3 Global Moran’s I after Empirical Bayes smoothing

Given the concern for a relatively rare outcome, and few births in some counties,
we might also be concerned about whether the rates are being well-estimated.
While the moranI.test() function above helped address the unequal variance
resulting from sparse as compared with populous counties, it did not directly
address the reliability of the estimate. However it is possible to combine the dis-
ease mapping tool Empirical Bayes smoothing with the Moran’s I statistic to get
a more reliable estimate of global spatial auto-correlation. The EBImoran.mc()
function from the spdep package does this for us.

ebm <- EBImoran.mc(n = vlbw$VLBW,
x = vlbw$TOT,
listw = q_listw,
nsim = 499)

print(ebm)

##
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## Monte-Carlo simulation of Empirical Bayes Index (mean subtracted)
##
## data: cases: vlbw$VLBW, risk population: vlbw$TOT
## weights: q_listw
## number of simulations + 1: 500
##
## statistic = 0.20882, observed rank = 500, p-value = 0.002
## alternative hypothesis: greater

In this case, the Moran’s I statistic remains similar, again adding confidence to
our belief that this test value is not simply a function of extreme outliers due
to sparse data. As mentioned above, the relatively larger p-value could derive
from the (more appropriate) use of Poisson rather than Gaussian distribution,
but also from the limits of precision from the permutation empirical p-values as
compared with asymptotic p-values.

8.3.3 Local Moran’s I

Once again, the interest and importance of global tests of spatial autocorre-
lation are in describing the overall structure of a spatial dataset, or in diag-
nosing or confirming underlying assumptions (e.g. the assumption of spatial
independence). However the identification (and mapping) of specific local clus-
ters of regions that represent hot spots (grouped-areas of high risk) or cold spots
(grouped-areas of low risk) is often a motivation for spatial cluster analysis; this
is the purview of local tests of spatial auto-correlation.

The Local Moran’s I is simply a decomposition of the global test into the individ-
ual values that are part of the summation. Unfortunately, there are many more
caveats when it comes to using these Local Indicators of Spatial Association
(LISA) statistics.

𝐼𝑖 = (𝑌𝑖 − ̄𝑌 )
𝑛

∑
𝑗=1

(𝑌𝑗 − ̄𝑌 )2/(𝑛 − 1)

𝑛
∑
𝑗=1

𝑤𝑖𝑗(𝑌𝑗 − ̄𝑌 )

This formula is simply the specification of an 𝐼 statistic for each sub-region in
the study area. Together, all of the 𝐼𝑖 sum to 𝐼 . However, there are a few
additional wrinkles when we break the overall 𝐼 statistic into sub-parts.

• First, in the global tests, our parametric assumptions for the variance
are plausible, assuming we have a reasonably large number of regions
(e.g. we have n=159). However for local test, we want to make inference
separately about each region (county in this example), and in that case
we are trying to test whether 1 county is correlated with its handful of
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neighbors. In other words, the N is quite small for each test, making
asymptotic (e.g. ‘large-number’) tests invalid.

• In addition, we are testing each county in turn, raising concerns for mul-
tiple comparisons and corresponding Type I error (e.g. whether we have
false positives in terms of statistical significance).

One thing to keep in mind is that LISA statistics are often selected to identify
where disease clusters. The p-value is a null-hypothesis statistical test of whether
the clustering is sufficiently unusual to be called significant. The most efficient
way to test for whether there is clustering is with global tests; the use of local
tests should therefore be seen in the light of descriptive and exploratory, although
as we shall see, there are adjustments for multiple comparisons to reduce concern
for Type I error.

8.3.3.1 Local Moran’s I - localmoran()

The first approach is to use the basic localmoran() function in spdep. This
method treats the variable of interest as if it were a normally distributed contin-
uous variable; that would be reasonable for some exposure or covariate measures,
and in some cases could be reasonable for disease rates if the values have rela-
tively similar levels of variance (e.g. all regions have sufficiently large population
sizes).

A previous version of spdep had a built-in option to calculate multiple com-
parison corrections of the local moran’s I. In the current version, that function
was removed from localmoran(), but you can still do it by looking at the help
documentation for the function ?p.adjustSP.

lm1 <- localmoran(x = vlbw$rate,
listw = q_listw)

dim(lm1) # dimensions of object returned

## [1] 159 5

summary(lm1) # summary of object returned

## Ii E.Ii Var.Ii Z.Ii
## Min. :-1.55827 Min. :-0.09571301 Min. :0.0000016 Min. :-2.8908
## 1st Qu.:-0.03078 1st Qu.:-0.00651091 1st Qu.:0.0120165 1st Qu.:-0.3002
## Median : 0.06534 Median :-0.00204478 Median :0.0656044 Median : 0.4763
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## Mean : 0.21420 Mean :-0.00632911 Mean :0.1805685 Mean : 0.4952
## 3rd Qu.: 0.34255 3rd Qu.:-0.00047898 3rd Qu.:0.1983378 3rd Qu.: 1.2909
## Max. : 2.69958 Max. :-0.00000003 Max. :2.6484359 Max. : 4.5459
## Pr(z != E(Ii))
## Min. :0.0000055
## 1st Qu.:0.1376159
## Median :0.3463825
## Mean :0.4130179
## 3rd Qu.:0.7236363
## Max. :0.9972931

The contents returned by the localmoran() function is a matrix with five
columns with separate values for each of 𝑛 = 159 rows (representing counties in
our data).

• Ii is the local Moran’s I test statistic.

• E.Ii is the expected value of the Moran’s I statistic under the null. Note
all values are the same, and are very close to zero.

• Var.Ii is the variance of each local Moran’s I statistic.
• Z.Ii is the standardized deviation (e.g. ‘z-score’) of the local Moran’s I

statistic
• Pr(Z>0) is the p-value (in this case adjusted for multiple comparison using

the false discovery rate method).

8.3.3.2 Plotting a Cluster Map

There are many options for visualizing the results including plotting the Local
Moran’s I statistic value 𝐼𝑖 for each county, mapping the p-value, or a combi-
nation. However a common approach implemented in the free GeoDa software,
and adopted in the ESRI ArcGIS software is to produce a map representing
each county with respect to the four quadrants of Moran’s plot.

1. High-High are regions with statistically significant positive values for
the local 𝐼𝑖 statistic, and higher-than-average rates in both index regions
and their neighbors

2. Low-Low are regions with statistically significant positive values for the
local 𝐼𝑖 statistic (because positive values of 𝐼𝑖 represent similar values,
whether similarly high or similarly low), and lower-than-average rates in
both index regions and their neighbors

3. High-Low are regions with statistically significant negative values for
the local 𝐼𝑖 statistic (because 𝐼𝑖 is negative when the index and neighbors
are inversely related), with the index region having higher-than-average
rates, and the neighbors having lower-than-average rates
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Figure 8.1: LISA scatterplot typology
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4. Low-High are counties with statistically significant negative values for
the local 𝐼𝑖 statistic, with the index county having lower-than-average
rates, and the neighbors having higher-than-average rates

5. Non-significant all regions with non-significant values for the 𝐼𝑖 statistic
are symbolized in a neutral color.

In practice, we can simply use the p-value from the localmoran() test to iden-
tify specific regions that are statistically significantly different from expectations
under the null. Then among these ‘significant’ regions we can assign them to a
quadrant based on two aspects of the risk or rate:

• The standardized (e.g. z-score value) of the VLBW rate in each county
• The weighed average of the standardized rate for each county’s neighbors,

where the weights are a function of neighbor definition. The function
lag.listw() does the computation for us; it accepts a vector of measures
plus a listw class description of the neighbors. It returns a vector of the
‘spatially lagged’ or averaged values of the variable of interest.

What is a spatial lag?
In prior examples we have used spatial neighbor definitions to
create a spatial weights matrix. That weights matrix used a form
of spatial lag or incorporation of information from adjacent units
to compare to the index unit.
In this example, the lag.listw() simply gives us the tools to
spatially lag any variable of interest. Specifically, the use below
goes county by county, and for each index region, uses the spatial
weights to calculate the average of all neighbors for that region.
That is useful now because we are using information on both the
rate in the index county and the rate in the neighbors to assign
quadrants.
In future examples we could use the lag.listw() function to test
whether the exposure in neighboring regions is correlated with the
outcome in the index county, a question of spatial diffusion.

# For convenience, give an easier name to the 5th column, representing p-value
names(lm1)[5] <- 'pvalue'

# create lagged local raw_rate - in other words the average of the queen neighbors value
vlbw$lag <- lag.listw(q_listw, var = vlbw$rate)
vlbw$lm_pv <- lm1[,5]

# Create a new dataset that includes standardized values, and then creates a new variable
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# 'lm_quad' which takes on the above categorical values.
vlbw_lm <- vlbw %>%
mutate(raw_std = as.numeric(scale(rate)), # scale means standardize to mean 0, 1 SD

lag_std = as.numeric(scale(lag)),
lm_quad = factor(case_when( # All of this is assigning labels based on values
raw_std >= 0 & lag_std >= 0 & lm_pv < 0.05 ~ 'High-High',
raw_std <= 0 & lag_std <= 0 & lm_pv < 0.05 ~ 'Low-Low',
raw_std <= 0 & lag_std >= 0 & lm_pv < 0.05 ~ 'Low-High',
raw_std >= 0 & lag_std <= 0 & lm_pv < 0.05 ~ 'High-Low',
lm_pv >= 0.05 ~ 'Non-significant'),
levels = c('High-High','Low-Low','Low-High','High-Low','Non-significant')))

To summarize, the code above accomplished the following steps:

• Assign a new column to our vlbw dataset named lag. This variable (pro-
duced with lag.listw() function) is the average VLBW prevalence in
the neighbors (defined by Queen contiguity in this case) of each county

• Assign a new column to our vlbw datasets named lm_pv (for local moran’s
p-value). This is done so all the needed information is in one object, the
vlbw data set.

• Within the chained series of dplyr steps that produce our new data object,
vlbw_lm, the following steps occur:

– Standardize the raw rate so that zero is the mean value and each unit
represents one standard deviation

– Standardize the spatially lagged rate
– Recode every county according to three factors: i) is the VLBW risk

in the county larger or smaller than average (e.g. higher or lower
than zero)?; ii) is the VLBW risk among the spatial neighbors of the
county larger or smaller than average?; and iii) is the local Moran’s
I test statistic significant at 𝛼 = 0.05 after adjusting for multiple
comparisons with the false discovery rate method?

– Note that in the recode, each line is a TRUE/FALSE statement. If
the answer was FALSE to each option then the final option is for the
county to be assigned the value 'Non-significant'.

Using case_when() for multi-category recode
In the code below I use a dplyr function called case_when(). This
function is an efficient way to do the work that would typically be
contained in a long chain of ifelse() statements. The syntax is
a test on the left-hand-side, a tilde (~) connecting, and the new
assigned variable if the test is TRUE on the right-hand-side.
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Having created this re-coded variable, we can now plot the results. The palette
used below is a custom specification of colors, with each color represented by
its HEX value (an alphanumerical system for cataloging the color spectrum).
These colors are roughly what is produced in GeoDa and ArcGIS, but any
colors suitable for categorical data (as compared to sequential data) would be
appropriate.

tm_shape(vlbw_lm) +
tm_fill('lm_quad',

style = 'cat',
palette = c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#ffffb3"),
title = 'Cluster category') +

tm_borders()

Cluster category
High−High
Low−Low
Low−High
High−Low
Non−significant

There are apparent ‘High-High’ clusters, a single county that is ‘Low-Low’, and
no counties categorized as spatial outliers (e.g. ‘High-Low’ or ‘Low-High’).
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Why is there a ‘cluster’ of 1?
In the map above there are unitary ‘clusters’ for both low-low and
high-high.
Remember a cluster is defined by the intersection of whether the
region itself is unusual and whether the neighbors are unusual.
But because this process is carried out separately for each county,
it is quite plausible that a single region is situated among other
similar-risk regions and is categorized as a local cluster, but it’s
neighbors may not have sufficient evidence to say that their neigh-
bors are also similarly extreme.

8.3.3.3 Local Moran’s I - localmoran.exact()

Another approach to the local spatial auto-correlation question, is to use exact
tests to account for the small-n problem of each test.

For this approach, you must supply a regression model object because the test
is done on the model-fitted values. The help documentation specifies this must
be an lm() object (e.g. linear model), and that no offsets are allowed.

One way to get the linear regression to account for the difference in population-
at-risk is to weight each observation (e.g. each region) such that their weight is
the proportion of the total state population of births at risk. Also note, that
localmoran.exact() uses the spatial neighbors objects, qnb, rather than the
previously used spatial neighbors weights list, q_listw.

# Create a vector of weights that reflect the relative population (births) size in each county
wts <- vlbw$TOT / sum(vlbw$TOT) * 159

# Fit a weighted linear regression model of the raw (observed) rates
reg1 <- lm(rate ~ 1,

data = vlbw,
weights = wts)

# Carry out the Exact Moran's I test on the model object
lm2 <- localmoran.exact(reg1, nb = qnb)

The localmoran.exact() function returns a more complex object than the
localmoran(), as you’ll see if you use summary(). The print() function ex-
tracts the useful information for plotting:
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# This just converts the output to a more useful 'matrix' format
lm2 <- print(lm2)

# Assign the exact p-value to the vlbw data object
vlbw_lm$pvalExact <- lm2[,3]

Now the object is ready for plotting using the strategy above of categorizing
counties into the LISA typology, and then mapping. Here we introduce one last
strategy, and then plot the three versions side by side below.

8.3.3.4 Local Moran’s I with constant risk assumption

The functions built in to spdep provide helpful approaches for describing lo-
cal spatial auto-correlation, but for some reason they do not extend (as the
Global Moran’s I tests do) to allow for Poisson-distributed case event counts
over population at risk. In other words they don’t allow us to use the constant
risk hypothesis that the number of events can be expected based simply on a
reference rate and the local population at risk.

While the functions are not automated, Bivand, et al1 provide some code which
itself is adapted from Waller & Gotway, and is adapted below.

We assume we already have a variable expected which is the product of the
overall rate times the population of each county and reflects the expected count
of VLBW babies in each county given the number of births if each county
followed a constant risk (e.g. the state overall average).

The designation in the steps below of CR refers to this being a constant risk or
Poisson based hypothesis about local autocorrelation.

# Step 1 - Create the standardized deviation of observed from expected
sdCR <- (vlbw$VLBW - vlbw$expected) / sqrt(vlbw$expected)

# Step 2 - Create a spatially lagged version of standardized deviation of neighbors
wsdCR <- lag.listw(q_listw, sdCR)

# Step 3 - the local Moran's I is the product of step 1 and step 2
vlbw_lm$I_CR <- sdCR * wsdCR

But all we have with this hand-made local Moran’s I under the constant risk
Poisson assumption, is the values of 𝐼𝑖, but not the variance, or indicator of

1Bivand RS, Pebesma E, Gomez-Rubio V. Applied Spatial Data Analysis with R, 2nd
edition. 2013. New York. Springer
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significance. Under the constant risk assumption, we can simulate the null
hypothesis by generating random Poisson counts, based on local expected values,
and comparing our observed event counts to the simulated distribution.

To conduct this simulation we must set up some parameters

# Step 4 - setup parameters for simulation of the null distribution

# for a random simulation, we often set a seed for random number generator
set.seed(123)

# Specify number of simulations to run
nsim <- 499

# Specify dimensions of result based on number of regions
N <- length(vlbw$expected)

# Create a matrix of zeros to hold results, with a row for each county, and a column for each simulation
sims <- matrix(0, ncol = nsim, nrow = N)

The code below simulates the distribution under the null hypothesis of constant
risk. In other words, what is being simulated here is not the geographic location
of each value, but instead the amount of variation in rate for each county that
could be expected simply due to chance and small numbers.

This step is not for testing the significance of the local dependence, but instead
to test the evidence for the observed rates being substantively ‘unusual’ as
compared to expectation.

# Step 5 - Start a for-loop to iterate over simulation columns
for(i in 1:nsim){
y <- rpois(N, lambda = vlbw$expected) # generate a random event count, given expected
sdCRi <- (y - vlbw$expected) / sqrt(vlbw$expected) # standardized local measure
wsdCRi <- lag.listw(q_listw, sdCRi) # standardized spatially lagged measure
sims[, i] <- sdCRi * wsdCRi # this is the I(i) statistic under this iteration of null

}

These next steps serve to organize the observed and simulated null results in
order to characterize whether each counties 𝐼𝑖 statistic as calculated in Step 3
above is significantly different from what we would have expected under Poisson
variation.
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# Step 6 - For each county, test where the observed value ranks with respect to the null simulations
xrank <- apply(cbind(vlbw_lm$I_CR, sims), 1, function(x) rank(x)[1])

# Step 7 - Calculate the difference between observed rank and total possible (nsim)
diff <- nsim - xrank
diff <- ifelse(diff > 0, diff, 0)

# Step 8 - Assuming a uniform distribution of ranks, calculate p-value for observed
# given the null distribution generate from simulations
vlbw_lm$pvalCR <- punif((diff + 1) / (nsim + 1))

Now we combine all of the p-values from these different strategies into a single
dataset to facilitate mapping.

vlbw_lm2 <- vlbw_lm %>%
mutate(lm_quad_exact = factor(case_when(

# First, recode the LISA quadrant values using exact test
raw_std >= 0 & lag_std >= 0 & pvalExact < 0.05 ~ 'High-High',
raw_std <= 0 & lag_std <= 0 & pvalExact < 0.05 ~ 'Low-Low',
raw_std <= 0 & lag_std >= 0 & pvalExact < 0.05 ~ 'Low-High',
raw_std >= 0 & lag_std <= 0 & pvalExact < 0.05 ~ 'High-Low',
pvalExact >= 0.05 ~ 'Non-significant'),

levels = c('High-High','Low-Low','Low-High','High-Low','Non-significant')),
# Now recode the LISA quadrant values using the constant-risk simulation

lm_quad_CR = factor(case_when(
raw_std >= 0 & lag_std >= 0 & pvalCR < 0.05 ~ 'High-High',
raw_std <= 0 & lag_std <= 0 & pvalCR < 0.05 ~ 'Low-Low',
raw_std <= 0 & lag_std >= 0 & pvalCR < 0.05 ~ 'Low-High',
raw_std >= 0 & lag_std <= 0 & pvalCR < 0.05 ~ 'High-Low',
pvalCR >= 0.05 ~ 'Non-significant'),

levels = c('High-High','Low-Low','Low-High','High-Low','Non-significant')))

And this plot compares the three versions:

tm_shape(vlbw_lm2) +
tm_fill(c('lm_quad', 'lm_quad_exact', 'lm_quad_CR'),

style = 'cat',
palette = c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#ffffb3"),
title = c('Standard LISA', 'Exact LISA', 'Constant Risk')) +

tm_borders() +
tm_layout(legend.position = c('RIGHT','TOP'),

inner.margins = c(0.02,.02,0.1, 0.1))
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Standard LISA
High−High
Low−Low
Low−High
High−Low
Non−significant

Exact LISA
High−High
Low−Low
Low−High
High−Low
Non−significant

Constant Risk
High−High
Low−Low
Low−High
High−Low
Non−significant

As you can see there is some overlap among the methods, and also notable
variations, with the most noticeable difference with the final simulated version
under constant Poisson risk. While the standard and exact approach will remain
the same each time you run the analysis, because of the random simulation, the
constant risk approach could change with each instance, and in particular, there
could be changes if you increase the nsim parameter to have more simulations
of the null hypothesis.
Overall it seems that there is relatively consistent evidence of clustered high risk
in Southwest Georgia, although the exact counties included varies. One could
argue that the third map best accounts for the dual concerns data sparseness
leading to spurious conclusions, and concerns about how extreme clusters need
to be, to be ‘unusual’ statistically.
There is also evidence (especially in the exact and constant risk maps) of clus-
tered low-risk counties in North Georgia. Although the discrepancy among
methods could be disconcerting two things should be kept in mind when inter-
preting any local clustering analysis.

1. Local cluster detection is an exploratory process that is most useful for de-
scription, hypothesis generation, and guiding further investigation. Cau-
tion should be taken against strong inference about individual counties
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being in versus out of hotspots, instead using the tools to identify evi-
dence of regional extremes.

2. LISA statistics (and all cluster strategies) rely heavily on null-hypothesis
significance testing. We know as epidemiologists that too much weight
can be put on the arbitrary achievement of a test statistic moving across
a largely meaningless threshold value. If you align the maps above with
past maps in Disease Mapping modules, the counties highlighted as high
and low are not surprising. The differences among these strategies relies
on statistical efficiency, power to detect ‘true’ deviations, and alignment
of the real world with statistical assumptions. Therefore, use these results
as tools for understanding but be cautious about using them as strong
decision tools.
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Table 8.2: Vocabulary for Week 8

Term Definition

1st order process

Statistical measures where units
taken one at a time. Spatial
heterogeneity is about how the
mean intensity varies for each
unit, and is therefore primarily
about first order process

2nd order process

Statistical measures where units
considered at least two at a time.
Spatial dependence is about
correlation or relatedness
between units and is therefore
about 2nd order processes

Spatial dependence

When attribute values or
statistical parameters are, on
avreage, more similar for nearby
places than they are for distant
places. Spatial dependence is
evaluated by looking at pairs or
sets of places.

Spatial dependence: Focal

Evaluation of clustering or
dependence of events or values in
a specific focal area, typically
defined in relation to a putative
hazard

Spatial dependence: Global

Evaluation of whether, on
average, there is spatial
independence (null) or spatial
dependence (alternative) in a
dataset. A global test returns a
single test statistic for the entire
dataset

Spatial dependence: Local

Evaluation of place-specific
dependence by comparing, for
each region, the correlation
between the index value and the
value of the neighbors. Local
tests result in a stest statistic for
each and every region

Spatial heterogeneity

Attributes or statistical
parameters are varied (e.g. not
homogenous) across sub-areas in
a broader region. In Disease
mapping we typically are
evaluating whether (and how
much) disease intensity (risk,
rate, prevalence) varies across
places.



Chapter 9

Spatial Structure and
Clustering II: Spatial scan
statistics

9.1 Getting Ready

9.1.1 Learning objectives

Table 9.1: Learning objectives by weekly module

After this module you should be able to…
Evaluate statistical estimation of spatial clustering in population health to
generate epidemiologic hypotheses
Apply spatial scan statistics to epidemiologic data and interpret results

9.1.2 Additional Resources

• Vignette for scanstatistics package in R
• SatScan website, supported by National Cancer Institute
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https://github.com/BenjaK/scanstatistics
https://www.satscan.org/


260CHAPTER 9. SPATIAL STRUCTURE AND CLUSTERING II: SPATIAL SCAN STATISTICS

9.1.3 Important Vocabulary

9.2 Spatial Thinking in Epidemiology: Concep-
tual tools for thinking about ‘clusters’

Last week we formalized two essential questions in spatial epidemiology:

1. Is there spatial heterogeneity or variation in the intensity of disease
within a study area?

2. Is there spatial dependency or autocorrelation in the disease rate among
local sub-regions of the overall study area?

These two questions recalled a contrast that we have made in prior weeks be-
tween global patterns and local patterns:

1. Global: characterization of patterns of intensity or autocorrelation for an
entire study region.

2. Local: characterization of specific deviations from expectation in sub-
regions of the study area.

To combine these two constructs, describing global heterogeneity is to ask,
“are there any areas that are meaningfully different from the constant risk null
hypothesis?” Describing global autocorrelation is to ask, “on average do
values in each region correlate with values in their neighboring regions?”

And by extension, describing local heterogeneity is to detect the existence of
a local extreme (e.g. intensity that is significantly and/or meaningfully higher
or lower than expected under assumptions of constant risk). Similarly, describ-
ing local autocorrelation is to detect specific sub-regions that are unusually
similar to (or perhaps unusually unlike) their neighbors.

9.2.1 The clustering conundrum

The preceding summary of points covered over the past weeks gives us a starting
point for analytically and statistically detecting and describing spatial clustering
of disease. As discussed last week, this is of interest statistically (e.g. to rule out
bias and error as sources of unusual patterning), epidemiologically (e.g. to char-
acterize the occurrence of disease as part of surveillance or etiologic research),
and from a policy and public health perspective (e.g. to inform public health
prevention, regulation, or policy).

While the constructs above help with the detection of unusual patterns, explain-
ing them (e.g. in terms of causes, processes, and exposures) is often the ultimate
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goal. So what exactly is ‘disease clustering’ and what does statistical evidence
of global or local heterogeneity or dependency tell us about the generation or
causes of clustering?

It turns out this notion of explaining ‘clustering’ is a tricky one both conceptu-
ally and analytically.

Conceptually, we might like to distinguish between at least two kinds of pro-
cesses:

1. Factors about the context or the population itself that results in greater
or smaller intensity of disease in one place versus another. For exam-
ple environmental toxicants such as air pollution or arsenic in the water
could plausibly affect all who live in the area, resulting in a higher disease
prevalence. UV-exposure varies by latitude, and this partly explains dif-
ferences in skin cancer and Vitamin D deficiency. Spatial variation caused
by changes in the underlying property of places or populations are called
1st order effects.

2. Processes of spread, contagion, or diffusion suggest that some interac-
tion between people (or between the institutional influence within places)
result in a spread or transmission of disease. This is most intuitive for
infectious disease, where transmission is a function of proximity. But
contagion and diffusion can occur in non-infectious outcomes as well, as
seen with behavioral contagion and social norms shared within networks
(e.g. acceptability of smoking, expectations about body size, etc). Spatial
variation or clustering caused by the interaction between individuals or
entities are called 2nd order effects.

The figure above illustrates 1st and 2nd order spatial effects in the context of
ecology. The core concept relevant to epidemiology is that 1st order effects
assume patterns are from differences in the mean intensity, whereas 2nd order
effects focuses on differences in covariation or correlation.

You might recognize, therefore, a parallel with our two essential questions of
heterogeneity of the mean intensity versus autocorrelation among local sets of
regions. You may also note that our analytic strategies have been framed in
the context of these distinctions: tests for spatial heterogeneity built on the null
hypothesis of constant risk sound like they are evaluating 1st order effects; in
contrast tests for spatial autocorrelation comparing pairs of regions sound like
they are evaluating 2nd order effects.

Analytically it would be great to have a test that distinguishes clearly between
these competing explanations for how the unusual spatial pattern was generated
or produced. But this is the second tricky issue. Both 1st and 2nd order
processes can produce patterns of disease that could be detected with either
tests for heterogeneity or tests for spatial autocorrelation. Said another way,
our tests cannot analytically distinguish why an unusual pattern was caused;
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Figure 9.1: Image source: https://mgimond.github.io/Spatial/index.html

instead they are complementary ways to describe the magnitude and location
of patterns.

At the end of the day, spatial epidemiologists must design the studies and select
the tools that best serve the needs of the question at hand. If detecting and
describing clustering is the primary goals (e.g. for surveillance or description),
then the combination of disease mapping and cluster detection may be the
beginning and the end of the work.

However, if characterizing the underlying causes and processes are important –
either for scientific understanding or effective public health action – then the
tools are just steps on the way. Disease mapping and cluster detection may
generate hypotheses, lead to additional investigation, or be used to triangulate
with other data to build a fuller picture.

9.3 Spatial Scan Statistics

The family of scan statistics are commonly used for identifying localized spatial
clusters of disease. Some of the specific examples of statistical approaches in
this broad category have been attributed to Besag & Newell, Openshaw (the
Geographical Analysis Machine), and to Kulldorff & Nagarwalla.

https://mgimond.github.io/Spatial/index.html
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This discussion focuses primarily on implementation of the latter set of tests.
Many users take advantage of stand-alone free software called SaTScan to carry
out these tests. The software can be downloaded here: https://www.satscan.
org/download_satscan.html. This site also has a rich set of tutorial and tech-
nical documentation resources.

In part because of the widespread use of the SaTScan software, there has been
less development of scan statistics in R. For that reason, some of the functions
used in the examples below do not have as many helper functions or wrappers
as we’ve had in some previous examples. As a result, this tutorial is a mix of
spatial analysis and hacking our way through output with R coding.

9.3.1 Packages & Data

We will use several familiar, and one new package in this lab: scanstatistics.

As of 2021 scanstatistics is not updated for R4.0
Unfortunately the developer of this package moved onto other
things and has not continued to maintain this package as versions
of R have evolved. Thus the package is no longer hosted on CRAN
repositories. In lab we will install an older version directly from
Github. The older version seems to perform well, at least in these
examples.

library(sf) # manage sf class data
library(dplyr) # facilitates data processing
library(tmap) # for thematic mapping
library(SpatialEpi) # Functions including the kulldorff()
library(ggplot2) # Create a ggplot visualization

In terms of data, we are using a new dataset for this example. Specifically
we have the counts of reported sexually transmitted infections (STIs; includes
chlamydia, gonorrhea, chancroid, and syphilis) for each county in Georgia, along
with the population count at risk. These data exist in a cross-sectional version,
pooling counts for 2018, with n=159 rows for the 159 counties.

However, there is also a spatio-temporal dataset of STIs for each county for each
year from 2010-2018. These data are in long format which means that there is
a row for every year and county (e.g. repeated rows within counties).

# cross-sectional STI data
sti <- st_read('ga-std-2017-18.gpkg')

https://www.satscan.org/download_satscan.html
https://www.satscan.org/download_satscan.html
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# calculated overall global risk of STI
r <- sum(sti$STD) / sum(sti$POP)

# use the global risk and the population of each county to calculate local expected
sti$expected <- r*sti$POP

# longitudinal STI data
sti_long <- st_read('ga-std-long.gpkg')

Because these are new data, here is a simple map of the STI rate for the 2017-18
years pooled.

sti %>%
mutate(rate = STD / POP * 1000) %>%
tm_shape() +
tm_fill('rate',

style = 'quantile',
palette = 'YlGnBu',
title = 'STI per 1000') +

tm_layout(main.title = 'STI per capita, Georgia, 2018',
inner.margins = c(0.1, 0.02, 0.02, 0.08)) +

tm_credits('Source: GA-OASIS, https://oasis.state.ga.us/') +
tm_borders()
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STI per capita, Georgia, 2018

Source: GA−OASIS, https://oasis.state.ga.us/

STI per 1000
1.42 to 4.43
4.43 to 6.11
6.11 to 7.53
7.53 to 9.49
9.49 to 19.22

9.3.2 Overview of Kulldorff & Nagarwalla scan statistic

Scan statistics get their name because they approach detection of clusters in
a flexible manner by ‘scanning’ the entire study region with many different
possible windows of observation. The basic analytic strategy of the Kulldorff
scan statistic follows several steps:

1. Define a single location (e.g. centroid of a polygon, or at regularly-placed
grid points across the region)

2. At each location, further define the radius of a window defining the area
local to the location. The radius typically is varied iteratively from zero
(e.g. only the single location included), to something large (perhaps as
large as is necessary to include 50% of the population). Scan statistics
typically use a circular window, although ellipses and other shapes are
possible.

3. For each location 𝑥, and for each of many possible window-radii (e.g. the
window surrounding each reference point), aggregate the count of events
and the population at risk (or alternatively the expected count of events
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under a constant risk hypothesis) inside (e.g. 𝑝) and outside (e.g. 𝑞) the
window.

4. Calculate a likelihood ratio test for whether the rates/risks are equal (𝐻0 ∶
𝑝 = 𝑞), or the risk inside the window is larger (𝐻1 ∶ 𝑝 > 𝑞).

5. Repeat the above four steps for every iteration of window-radius and every
location in the study region.

The first thing that should be apparent, is that the null assumption being tested
is the constant risk or spatial homogeneity of risk assumption, rather than the
spatial independence assumption. This is clear from the fact that we are not
assessing correlation between values, but the magnitude of the risk/rate inside
versus outside the region. This illustrates that testing for spatial autocorrelation
(e.g. with Moran’s I or LISA) is not the only way to conceive of clusters.

It is also apparent that what results is a large number of test statistics, which
raises concern for multiple comparisons and Type I error. Kulldorff’s approach,
however, suggests that we are not interested in the set of statistically significant
test statistics (of which there could be many by chance alone given the number
of tests conducted), but instead that we are interested in identifying a single (or
perhaps a few) most-likely cluster(s).

By a priori restricting interest to a most-likely cluster, we eliminate concern
for multiple comparison. It is possible that the most-likely cluster is in fact
statistically significant, or that it is not (e.g. if there is spatial homogeneity, the
most likely is still not that interesting!).

Because all-possible locations 𝑥 and window-radius were tested, we can also
choose to look at secondary clusters, recognizing that the further down the list
of unusual test statistics, the greater the risk of Type I error.

The strengths of the Kulldorff scan statistic are its flexibility with respect to
defining ‘local’, and the straightforward evaluation of whether there is more risk
within a window versus outside. The potential limitations are that some clusters
(e.g. along highways producing a linear pattern) may not be readily detected
by circular or elliptical search windows.

9.3.3 Spatio-temporal scan statistics

While the above strategy described a purely spatial scan, it is relatively straight-
forward to extend the strategy to include spatio-temporal scans. Obviously for
this to work, data must be available for multiple time-periods within every
region.

For spatio-temporal scans, we simply add another dimension of the defined
window. Each window will be centered at a given location (e.g. the centroid of
a county), have a given radius, and include a varying-number of time-periods.
For instance, two iterations of the test could be centered at the same spatial
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location, with the same window-size, but one might include a single time-period,
and another includes two time-periods.

A comparison of the resulting test statistics tells us whether the count of events
inside the spatio-temporal window (or spatio-temporal ‘column’) with one time-
period is different from that of a spatio-temporal window with two time-periods.
Instead of a scanning circle traveling across the map, we might imagine a scan-
ning column or tube with its height varying to define different numbers of time
periods.

For example in the illustration below, the conventional cross-sectional scan
statistic would simply move a two-dimensional window around the map. But
the spatio-temporal window has a third dimension reflecting maps stacked on
top of one another.

Figure 9.2: Image source: https://www.mdpi.com/1999-4907/11/4/454/htm

9.3.4 Estimating spatial-only Kulldorff scan statistics

The kulldorff() function in the package, SpatialEpi is a relatively easy way
to implement spatial-only scan statistics.

https://www.mdpi.com/1999-4907/11/4/454/htm
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9.3.4.1 Prepare data

Look at the help documentation for the function, kulldorff(). The function is
not currently written to directly use a spatial object in R (e.g. an object of class
sf or sp), so instead we must supply a matrix of 𝑥, 𝑦 coordinates representing
the centroids of each area region (county in this scenario). The centroids are
used in the iterative specification of the study window, determining who is in
versus out of the window by whether the county-centroid falls in or out of the
circle.

First we need the 𝑥, 𝑦 coordinates of the centroid of each county in a matrix
form. The following code achieves that.

sti_cent <- st_centroid(sti) %>%
st_coordinates()

head(sti_cent)

## X Y
## [1,] 1057695 1255760
## [2,] 1363356 1098009
## [3,] 1095793 1279833
## [4,] 1367529 1010385
## [5,] 1225492 1068308
## [6,] 1279077 1097468

9.3.4.2 Call kulldorff() function

There are several other decisions to make when using the scan statistic. First,
what is the maximum size window you wish to search? This can be specified
using contextual knowledge about how large or small clusters are anticipated to
be. In the absence of a priori knowledge about size, it is common practice to
allow windows to vary from zero to a size large enough to include 50% of the
population at risk within the window.

In addition, you must set the number of Monte Carlo simulations of the null
hypothesis (e.g. simulations of the distribution of counts under a constant risk
hypothesis). As discussed previously, you need an adequately large number of
iterations to approximate the distribution of what could happen by chance alone
under the null.

The precision (number of significant digits) of the resulting p-value is limited
by the number of iterations. Below I specify n=499 null iterations, which when
added to the single test of the observed data produces n=500 versions of the
test. Our inference is based on how unusual the single test from the observed
data are in relation to the 499 tests under the null.



9.3. SPATIAL SCAN STATISTICS 269

Finally, the specification of the alpha.level dictates which (if any) secondary
clusters are retained. The most-likely cluster will be reported no matter the
significance, but secondary clusters are only retained if they are smaller than
the alpha threshold. For the purposes of exploration I set alpha to 0.2.

k1 <- kulldorff(sti_cent,
cases = sti$STD,
population = sti$POP,
expected.cases = sti$expected,
pop.upper.bound = 0.5,
n.simulations = 499,
alpha.level = 0.2)
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Obs. log(Lambda) = 2886.134
p−value = 0.002

The plot produced by default (to suppress plot specify plot = FALSE), shows
a histogram of the simulated null distribution for log-likelihood ratios of the
contrast of rates inside versus outside assuming the constant risk hypothesis.

In other words, the permutation simulation applied the average risk to the ac-
tual population assuming simple Poisson distribution. The histogram therefore
includes information on the likelihood ratios for 𝑛 = 499 simulations of the null.
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In addition to simulated permutations there is 𝑛 = 1 actual observed likelihood
ratio from the single most significant cluster identified from all-possible scans.
In this case the single most significant cluster is indicated with a red line. It is
quite evident that this cluster is highly unusual under the null assumption, with
empirical p-value = 0.002.

9.3.4.3 Summarize results

Unfortunately, there is not a handy function for providing a pretty summary,
but much information is contained within this object. By examining specific
aspects of the result we can learn a great deal. First, note that the object
produced, k1 is a list meaning it is composed of several sub-parts. We can see
the names of those parts like this:

# See the elements returned by function - explore them!
names(k1)

## [1] "most.likely.cluster" "secondary.clusters" "type"
## [4] "log.lkhd" "simulated.log.lkhd"

We will begin by looking at the most.likely.cluster component, which itself
has several sub-parts:

# See the row-numbers for the counties in the most-likely cluster
k1$most.likely.cluster$location.IDs.included

## [1] 138 142 111 137 135 76 23 8 159 130 24 123 131 90 85 46 157 136 141
## [20] 129 122 99 145 83 29 104 74 153 152 96 35 95 45 78 100 62 93 88
## [39] 105 69 98 32 128 140 38 49 12 5 158 119 151 34 75 125 53 102 91
## [58] 144 132 18 25 89 81 80 72 124 48 26 19 139 120 52 63 154 97 121
## [77] 117 84 6 36 37 50 134 79 156 59 68 82 66 94 147 1

# See the SMR for the most-likely cluster
k1$most.likely.cluster$SMR

## [1] 1.255823

# See the observed and expected cases inside cluster
k1$most.likely.cluster$number.of.cases
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## [1] 55699

k1$most.likely.cluster$expected.cases

## [1] 44352.6

You can see that the STI rate inside this cluster is two and a half times higher
than the rate outside the cluster (e.g. the SMR contrasting rates inside versus
outside is 2.54).
We can also look at similar information for the secondary clusters, which are
the clusters with the second-highest log-likelihood ratio.

# see how many additional clusters reported:
length(k1$secondary.clusters)

## [1] 4

The object secondary.clusters is a list, with each element of the list con-
taining the same information we just reviewed in the most.likely.cluster.
In other words we can see the p-value, SMR, and list of counties contributing
to each of these secondary clusters. In this code-snippet I use the base-R
function sapply() to extract the 5th element (SMR) and 8th element (p.value)
from each of the secondary cluster in k1$secondary.clusters. (Alterna-
tively you could have used k1$secondary.clusters[[1]]$p.value, and
k1$secondary.clusters[[2]]$p.value to get the values). I use the format()
function to specify the number of digits to print.

tibble(
SMR = format(sapply(k1$secondary.clusters, '[[', 5), digits = 3), # this gets SMR's
lik = format(sapply(k1$secondary.clusters, '[[', 6), digits = 2), # this gets log-likelihoods
pval = format(sapply(k1$secondary.clusters, '[[', 8), digits = 3)) %>%# this gets p.values
kableExtra::kable(align = 'c')

SMR lik pval
2.25 1013 0.002
1.40 245 0.002
1.33 33 0.002
1.27 25 0.002

First, notice that the log-likelihood ratios for these two secondary clusters are
substantially smaller than our most-likely cluster (it was nearly 6000!). In ad-
dition the SMR’s and p-values vary.
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9.3.4.4 Plotting results

Just as there isn’t a handy function for summarizing the results, there also isn’t
a handy function for plotting results. As a result we have to do a little work
to see where the clusters are. Here is a step-by-step strategy for creating a
variable in our Georgia county STI dataset that indicates whether each county
is in or out of a cluster.

1. First, initialize a new variable called k1_cluster. To initialize simply
means to create it without any values (e.g. all set to NA).

sti$k1_cluster <- NA

2. Now fill in the value for this new variable according to whether each
county is in a given cluster. Recall that the row-numbers for the
counties included in the most-likely cluster are contained as a vector in
k1$most.likely.cluster$location.IDs.included. Therefore, we can
use those row indices to say which counties should be assigned to cluster
1 (the most-likely cluster).

sti$k1_cluster[k1$most.likely.cluster$location.IDs.included] <- 'Most likely cluster'

3. The same approach can be used to extract the location.IDs.included
for each of the secondary clusters. Here I simply loop (using for(i in
1:length(x))) across however many secondary.clusters there are and
name them.

for(i in 1:length(k1$secondary.clusters)){
sti$k1_cluster[k1$secondary.clusters[[i]]$location.IDs.included] <- paste(
'Secondary cluster ', i, sep = '')

}

The result is a mappable variable:

tm_shape(sti) +
tm_fill('k1_cluster',

style = 'cat',
textNA = 'Not in cluster',
palette = 'Set1',
title = '') +

tm_borders() +
tm_layout(legend.outside = T)
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Most likely cluster
Secondary cluster 1
Secondary cluster 2
Secondary cluster 3
Secondary cluster 4
Not in cluster

There are several things apparent from this map. First and foremost, the STI
rate in the portion of the state colored red is substantially higher than outside
that portion, and the cluster including all of these counties has the largest like-
lihood ratio. In addition to that huge cluster, there are a handful of secondary
clusters that reached our threshold of significance at 𝛼 = 0.2.

9.3.5 Estimating spatio-temporal Kuldorff scan statistic

In R, there is currently only one package that readily permits spatio-temporal
scan testing, and that is scanstatistics. It actually implements a some-
what limited version of the temporal component: It assess how cluster duration
varies, but at least in its current iteration, all cluster duration go from the last
period back. In other words if our data end in 2017, it will consider 2017, then
2017+2016, then 2017+2016+2015. However what it (apparently) will not do
is consider intervals of time in the middle of the study period (e.g. 2015+2016
but not including 2017). This is unlike Kulldorff’s implementation in the free
software Sat Scan.
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The examples below have some relatively complex looking R code.
It is provided here for those who might try to adapt the code to
their own projects. However please note that I do not expect
everyone to ‘learn’ or ‘remember’ all of these code details. The
important high level concepts concern the interpretation of scan
statistics.

9.3.5.1 Preparing data

The data in the sti_long spatio-temporal object include STI counts and pop-
ulation at risk for every Georgia county and for each year from 2008-2017. In
other words there are 10 rows for every county.
There are several ways to present data to the scanstatistics functions, but
the easiest will probably be as an sf data frame. However the variables must
follow a specific naming protocol (see help documentation).

sti_scan2 <- sti_long %>%
mutate(count = STD, # event variable must be labeled 'count'

location = GEOID, # region id must be labeled 'location'
population = POP, # denominator must be labeled 'population
time = as.integer(YEAR))%>% # time-period must be labeled 'time'

dplyr::select(time, location, count, population)

9.3.5.2 Prepare geographic window zones

This package also has a unique way of defining the areas contained within the
varying-sized windows, which are called zones in this context. The approach
first defines k-nearest neighbors in order to locate how regions are connected
to one another. Then using measures of distance between each region and its
k-nearest neighbors, the varying-sized windows are applied. The result is a set
of zones which consist of each county plus its neighbors starting at zero-distance
(no neighbors) up to the maximum number of neighbors defined.
Although the data are in the long format (e.g. multiple years for every geographic
region, county), the zones should be calculated from an object where each region
is only represented once.

## 2022 - This code outdated -- changes in progress ##
zones <- sti %>%
st_centroid() %>% # convert polygons to centroid
st_coordinates() %>% #converts sf object to matrix of x, y locations
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spDists(x = ., y = ., longlat = FALSE) %>%
dist_to_knn(k = 50) %>% # distance up to the 50 nearest neighbors
knn_zones() # convert into zones needed for scanstatistics based on distances

What exactly did this function do? First try looking at the data class of the
object and its length:

## 2022 - This code outdated -- changes in progress ##
class(zones)

## [1] "function"

length(zones)

## [1] 1

Because the object is of class list, we can examine individual list elements to
better understand the output (here I just randomly chose some elements):

## 2022 - This code outdated -- changes in progress ##
zones[[34]]
zones[[657]]

Notice that each element in the list called zones is a vector of row-id’s. In
other words what zones represents is every iteration of location x window-size
calculated from the preceding procedure. This will become important when it
comes time to plot the results.

9.3.5.3 Estimate spatio-temporal scan statistics

There are several scan statistic options in this package including reliance on
Poisson assumptions versus Negative binomial, and allowing for estimation with
population denominators, or with expected counts. Here is an implementation
of the population-denominator version of the Poisson scan (note this will take
a minute to run):
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## 2022 - This code outdated -- changes in progress ##

#k2 <- scan_pb_poisson(sti_scan2,
# zones = zones,
# n_mcsim = 499)
#print(k2)

The basic summary information tells us the row-ID’s for the most likely spatio-
temporal cluster, and that of the 9 year period, the most-likely duration of this
cluster is in fact 9-years (e.g. 2010-2018). In other words the cluster of STI’s is
quite persistent over time!

9.3.5.4 Visualizing most-likely clusters

The package scanstatistics has a function for extracting the most-likely clus-
ters, and from this we can visualize their location, and explore the duration and
intensity of each.
First, we use the function top_clusters() to extract the information. In this
case we are asking for the top 5 clusters, specifying that we want them to be
non-overlapping.

## 2022 - This code outdated -- changes in progress ##
top5 <- top_clusters(k2, zones, k = 5, overlapping = FALSE)

To see what top_clusters() produced, look at the object:

## 2022 - This code outdated -- changes in progress ##
top5

As expected there are 5 rows in the object, and each row tells us something
about that respective cluster.

• The first thing it tells us is what spatial zone is involved. Remember how
each element in the object zones was a vector of neighbors? This zone
number refers to a particular neighbor set with the highest likelihoods of
containing clustered deaths.

• In addition the object top5 tells us the most likely duration or temporal
dimension of the cluster. So the single most likely spatio-temporal cluster
is described by zone 154, and it is 9 years in duration; the fifth most likely
cluster is described spatially by zones 501, and temporally was 8-years in
duration.
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To get the information about zones into our sf object for mapping we can use
functions from the package purrr which is an efficient way to process vectors
contained in lists. What it is doing is looking at the zones defined in top5$zone,
and using that number, extracting the vector of row-ids from our original zones
object. This produces a list of involved counties.

## 2022 - This code outdated -- changes in progress ##
# First, get vector of county names
county <- as.vector(sti$NAME)

# Find the counties corresponding to the spatial zones of the 5 clusters.
top5_counties <- top5$zone %>%
purrr::map(get_zone, zones = zones) %>%
purrr::map(function(x) county[x])

The new object, top5_counties is a list of length 5, and each element of the
list is a vector of county names.

Now we can use this list of names to populate a new variable in our sf dataset.
We’ll do that by iterating through the elements in the list, top5_counties, and
apply a cluster ID, cluster duration, and cluster score, which is related to the
log-likelihood.

## 2022 - This code outdated -- changes in progress ##

for(i in 1:length(top5_counties)){
cluster <- top5_counties[[i]]
sti$cluster[sti$NAME %in% cluster] <- i
sti$c_score[sti$NAME %in% cluster] <- top5$score[i]
sti$c_duration[sti$NAME %in% cluster] <- top5$duration[i]

}

9.3.5.5 Mapping top-5 clusters

## 2022 - This code outdated -- changes in progress ##

tm_shape(sti) +
tm_fill('cluster',

style = 'cat',
palette = 'Set1') +

tm_borders()
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So why are there only 4 clusters when we asked for 5? After some investigation
it is clear that the most likely cluster and the second most-likely fully overlap
(despite the option to disallow overlapping clusters!).

You may also note that the cluster locations look quite different from the cross-
sectional analysis of 2018 data! This is because the search for spatio-temporal
clustering can turn up distinct patterns from what would be observed in a single
year. These clusters rise to the top because there is the strongest evidence for
them being significantly unusual.

If you wanted to also produce a visualization of the time-span of each of these
clusters, you could use ggplot2 to do so. First we create a variable for the start
and end time (all end times are assumed to be the last year, 2017).

## 2022 - This code outdated -- changes in progress ##

# Assign a cluster number called 'order'
top5$order <- 1:nrow(top5)
# Calculate start/end years from cluster duration
top5$end <- 2018
top5$start <- 2018 - top5$duration

# Create ggplot
g <- ggplot(top5, aes(x = start, y = order, col = as.factor(order)))
g + geom_segment(aes(yend = order), xend = 2019, size = 2) +
geom_point(size = 3) +
labs(x = 'Cluster timing',

y = 'Cluster number',
col = 'Cluster')

Because most of the clusters represent persistently high levels over the entire
9-year period, there is not much distinction in this example. However, Cluster
5 does stand out in that it was only apparent in the beginning of the study
period.

9.3.5.6 Mapping relative scores

Each county has a varying probability of being in versus out of a cluster. There
is a function (which takes a long time to run!) that calculates, the average of
the statistic for each space-time window that the location is included. In other
words, it averages the statistic over both the zones and the maximum duration.
The reason for doing this, is to quantify (and visualize) the relative likelihood
that each location is a part of the cluster.
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## 2022 - This code outdated -- changes in progress ##

# Note: This step takes awhile...about 4-5 minutes on my computer
#county_scores <- score_locations(k2, zones)

## 2022 - This code outdated -- changes in progress ##

# This part goes quicker - first just rename some stuff for merging
sti_scan3 <- county_scores %>%
mutate(NAME = county) %>%
left_join(sti, by ='NAME') %>%
st_as_sf() # this just converts the new object back to 'sf'

Now you can map the relative score, interpreting it as the relative likelihood of
each county being a member of the cluster:

## 2022 - This code outdated -- changes in progress ##

tm_shape(sti_scan3) +
tm_fill('relative_score') +
tm_borders()

This shows that, using the 9-year time series, there is variation in the likeli-
hood of counties being a part of a true cluster, with highest probability around
the most likely cluster. It is once again notable that the patterns of spatio-
temporal clustering are relatively distinct from the patterns of point-in-time
cross-sectional clustering using 2018 data only.

9.3.6 Concluding thoughts

The scan statistics represent one more tool useful for investigating for the exis-
tence and location of spatial clusters of disease events. In the case of the scan
statistics, the clustering is specifically local excess risk in violation of the as-
sumption of spatial homogeneity or constant risk. It is therefore distinct from
the measures of spatial auto correlation such as the Moran’s I statistic.

Scan statistics are useful for finding a statistically significant most-likely cluster,
and for exploring secondary clusters. Their extension to spatio-temporal setting
is another feature. This information can compliment what is learned from tests
of spatial auto correlation, and from the global and local test discussed last
week.
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Table 9.2: Vocabulary for Week 9

Term Definition

1st order process

Statistical measures where units
taken one at a time. Spatial
heterogeneity is about how the
mean intensity varies for each
unit, and is therefore primarily
about first order process

2nd order process

Statistical measures where units
considered at least two at a time.
Spatial dependence is about
correlation or relatedness
between units and is therefore
about 2nd order processes

Global vs Local spatial
analysis

Global analysis evaluates a
pattern or trends that
characterizes the entire study
region; in contrast local analysis
characterizes patterns that are
unique to each sub-region of the
study area

Spatial dependence

When attribute values or
statistical parameters are, on
avreage, more similar for nearby
places than they are for distant
places. Spatial dependence is
evaluated by looking at pairs or
sets of places.

Spatial heterogeneity

Attributes or statistical
parameters are varied (e.g. not
homogenous) across sub-areas in
a broader region. In Disease
mapping we typically are
evaluating whether (and how
much) disease intensity (risk,
rate, prevalence) varies across
places.

Spatial scan statistic

A test for extreme or unusual
event intensity inside versus
outside a varying regional
window, in an effort to detect
local clusters of disease



Chapter 10

Spatial Regression I:
Spatializing aspatial
regression residuals

10.1 Getting Ready

10.1.1 Learning objectives

Table 10.1: Learning objectives by weekly module

After this module you should be able to…
Choose and justify spatial analytic methods that aligns with the
epidemiologic research question or objective
Calculate and interpret spatial patterns of residuals from an aspatial
multivariable regression model

10.1.2 Important Vocabulary

10.2 Spatial Thinking in Epidemiology

10.2.1 Multivariable regression for exploring spatial data

Multivariable regression is not magic. It is just fancy correlations and estimation
of sample means. It is a statistical tool that takes noisy or variable data, and
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Table 10.2: Vocabulary for Week 10

Term Definition

Data generating process

The true underlying causal
structure that gives rise to
(generates) the data from which
you sampled. The data
generating process is not known.
We use models to try to emulate
or approximate the data
generating process.

Model residual

The difference between the model
predicted value of the outcomee
and the observed value. In
spatial epidemiology, model
residuals can provide clues as to
the presence of missing variables
that produce spatial patterns

smooths or reduces it to summary statistics which we hope are more interpretable
than trying to make meaning from the raw data alone.

Multivariable regression methods are useful to epidemiologists because this is
often what we want: smoothed summaries that distill some trends or features
that (hopefully) give us clues about the true process.

There are several motivations for using multivariable regression with spatial
data:

1. For descriptive spatial analysis, we may be interested in producing ad-
justed estimates conditioned on multiple covariates (e.g. age strata, socioe-
conomic status, or background/nuisance environmental features). While it
is possible to produce indirectly adjusted estimates as discussed in Disease
Mapping, this becomes more challenging with higher data-dimensionality
(more variables). For example we could use multiple variables to predict
the disease count (or rate) in each region as a function of those covariates.

2. For exploration and diagnosis of aspatial model performance,
we may want to evaluate whether regression models explain spatial auto
correlation, or whether there is undiagnosed dependency (spatial auto-
correlation) in residuals that is not apparent from conventional aspatial
residual diagnostic plots.

3. For etiologic spatial analysis, we may be interested in estimating con-
ditional associations which could be interpreted as causal effect estimates
under certain circumstances including adjustment for causally confounded
pathways. This motivation for aspatial modeling extends to spatial in at
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least two scenarios:

• Interest is in association between a predictor and an outcome, condi-
tional on covariates, but there is concern for residual nuisance spatial
auto correlation which if unaddressed could bias estimates

• Interest is in association between a predictor and an outcome, con-
ditional on covariates, and there is spatial interaction or spillover in
the causal process.

10.2.2 Data Generating Process

Of critical importance for effective use of regression in any aspect of epidemi-
ology, including spatial, is theorizing or hypothesizing about the data gener-
ating process. This is simply a phrase for describing the (possibly unknown)
mechanisms in the world that collectively generated the events that gave rise
to the data we sampled and observed. In causal epidemiology, we often use
directed acyclic graphs (DAGs) as illustrations or models of possible data gen-
erating processes.

The reason to bring this concept up at this point, is because the process by which
spatial patterns are generated is of central interest in spatial epidemiology. If
health events (e.g. incident cancer, influenza, or diabetes) were homogeneous
and constant over space – or if they were heterogeneous but purely random and
independent of one another – we might see less value in the tools of spatial
epidemiology to gain insight.

However, when we observe spatial structure or patterns (including extremes of
heterogeneity or dependence) in disease or health status, it is unlikely that these
patterns just ‘sprung up’ for no reason. In other words, rarely is your physical
location at a specific latitude and longitude the sole explanation for having
higher or lower risk of disease. Instead spatial patterns in health are due to spatial
patterns in the causes of health, or the data generating process. Therefore
we often wish to dig deeper to understand these causes, and to describe as
accurately as possible the data generating process.

10.2.3 Model residuals are not just mistakes

You will likely recall from biostatistics that for a given random variable we can
define statistical error as the deviation of a specific observation’s measured value
from its expected value, which is the true mean in the underlying population.
Because we rarely know the true mean for the entire population, we use the
mean from our specific sample as an approximation. Therefore a model residual
is the difference of an observation from the sample mean.

The use of the word ‘error’ is used in some contexts because these deviations
are presumed to represent some unknown, random, mistakes in the estimation



284CHAPTER 10. SPATIAL REGRESSION I: SPATIALIZING ASPATIAL REGRESSION RESIDUALS

perhaps because of sampling error (e.g. we only took a sub-sample from the
full population) or because of simple random chance (e.g. ‘measurement’ error).
Because we sometimes treat the errors as random mistakes, we often assume
the errors follow certain random distributions.

For example, in linear regression we assume that the model residuals are nor-
mally distributed, and that – on average – their value is zero. In other words, we
assume that the average observation is in fact equal to the sample mean, and
therefore there is zero difference between them. In addition, for the residuals
that are not exactly equal to the expected value, they could be positive (e.g. the
observed value is larger than expected), or negative (observed value is smaller
than expected), and the amount of variability is summarized as 𝜎2.

So in classical theory, these modeled ‘mistakes’ or residuals are assumed to show
a pattern consistent with random chance:

1. They should be independent of one another;
2. They should vary around zero;
3. They should follow an expected distribution (e.g. normal distribution for

simple linear regression).

What, then, does it mean if the pattern of the residuals does not appear as
expected? This is what you have been trained to examine when you do residual
diagnostics of regression models.



10.2. SPATIAL THINKING IN EPIDEMIOLOGY 285

Regression models to approximate the data generating
process
Spatial variation in disease can be explained by spatial variation in
the causes or predictors of disease. A somewhat simplistic strategy
to begin to explore the data generating process follows:

1. The predicted value from an unconditional mean regression
model (e.g. a model with only an intercept but no other
predictors) is that every observation is average (e.g. the pre-
diction is that each observation equals the intercept). The
model residuals represent error or difference of each obser-
vation from the global average.

2. Putting these residuals on the map describes the pattern of
error or unexplained variation. If there is autocorrelation,
we might hypothesize there are missing variables that are
part of the data generating process.

3. We could fit one or several additional models in which we
add hypothesized predictor of the data generating process.
For each model, we can make a new prediction of the value
of each observation, incorporating the 𝛽 coefficient and mea-
sured value of the predictor.

4. Putting the residuals from conditional or adjusted models on
the map describes whether there is still any spatial struc-
ture, after we have accounted for the parts of the data gen-
erating process attributable to the exposures or predictors
in the model.

This basic logic - that model residuals ‘absorb’ or ‘describe’ the unexplained
variation in health above and beyond expectations from the specified model, is
leveraged in many analytic strategies in spatial epidemiology. We can use pat-
terns in regression model residuals as clues about how well we are approximating
the data generating process. Specifically, we often test for when or whether the
residuals are spatially independent (as expected under the null hypothesis for
model errors), or spatially dependent or auto-correlated.

In other words, putting regression residuals on the map in their spatial context
provides a whole new lens through which to think about the data.
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10.3 Spatial Analysis in Epidemiology

10.3.1 Spatializing aspatial regression

This is the first of three weeks considering the application of multivariable re-
gression to spatial data. A logical starting point is considering how we can
interpret the conventional aspatial regression models you have become familiar
with from biostatistics and epidemiologic modeling coursework.

10.3.1.1 Data & Packages

pacman::p_load(tidyverse, # General data processing
sf, # Read/write sf data
spdep, # Moran's I and spatial neighbors functions
tmap, # Mapping
MASS) # Statistical package including function for studentized residuals

vlbw <- st_read('ga-vlbw-covar.gpkg') %>%
mutate(rate = VLBW / TOT)

In this tutorial, we will once again use the vlbw dataset with very low birthweight
prevalence in Georgia counties as an example. Although it has the identical
outcome as that used in prior examples, this dataset also has several contextual
variables as covariates. These contextual variables are selected as proxies of one
hypothesized data generating process. Specifically, we now have the following
variables measured for each county:

• MCD: A categorical variable designating each county as a Maternity Care
Desert or an area with inadequate access to outpatient and inpatient
women’s health care services

• PctPov: A continuous measure of the percent of the population living
below the federal poverty line (ranges from 0 to 1)

• isolation: A measure of county-level Black-White residential racial seg-
regation using the Isolation Index (ranges from 0 which is no segregation
to 1 which is complete segregation).

• FI: Food Insecurity index
• SocCap: Social Capital index
• pctNOIns_Fem: The proportion of women without health insurance

These added variables may not explain all differences in risk for very low birth
weight. But because each of these is known to vary spatially, and each is related
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to population-level lifecourse economic opportunity, health status and access to
health care, they are plausible (or at least hypothesized) contributors to the
generation of spatial structure or dependence in population VLBW.

10.3.1.2 Fitting unconditional (empty) model

We have discussed extensively the benefits of modeling ‘rate’ data with numer-
ator and denominator counts as arising from a Poisson, binomial, or negative
binomial distribution. This is because the values are not normally distributed,
and the variance may be different (heteroskedastic) across regions due to differ-
ent population size at risk.

However, as an approximation we will convert the numerator and denominator
counts into a continuous ‘rate’ or ratio, and model using linear regression. To
partially account for the heteroskedasticity, we will weight each county by its
relative population (e.g. number of births at risk for VLBW).

Fitting linear regression models in R is straightforward. For our purposes, we
might first fit an empty or unconditional mean model. That means a regression
model where there is only an intercept, but no predictors. This model essentially
decomposes the outcome into a global mean value (the expected value), and
the residuals represent the difference of each county from that overall mean or
expectation.

# Create a vector of weights that reflect the relative population (births) size in each county
wts <- vlbw$TOT / sum(vlbw$TOT) * 159

# Fit a weighted linear regression model of the raw (observed) rates
m0 <- lm(rate ~ 1,

data = vlbw,
weights = wts)

summary(m0)

##
## Call:
## lm(formula = rate ~ 1, data = vlbw, weights = wts)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -0.0149727 -0.0035211 0.0003131 0.0029493 0.0186953
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.018189 0.000436 41.72 <2e-16 ***
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.005498 on 158 degrees of freedom

Look at the summary of this model. The results are sparse because we did not
include any predictors. The intercept estimate is our modeled expectation of
the global average risk for VLBW (e.g. 0.018 or 1.8%). The summary results
also report the basic numerical range of the model residuals. Below we will put
those residuals on the map, but first let’s fit one more model.

10.3.1.3 Fitting conditional model

That previous model is not very interesting, so we might add some predictor
variables. Here we consider two measures of social and material context that
could influence women’s health (poverty rate, pctPOV and residential racial seg-
regation, isolation), as well as two indicators of health access including the
prevalence of women in the county who are uninsured (pctNOIns_Fem) and
whether each county is a designated Maternity Care Desert (MCD), meaning
there is no access to OB/GYN or midwives, nor any hospitals with labor and
delivery capacity.

m1 <- lm(rate ~ pctPOV + isolation + pctNOIns_Fem + MCD,
data = vlbw,
weights = wts)

summary(m1)

##
## Call:
## lm(formula = rate ~ pctPOV + isolation + pctNOIns_Fem + MCD,
## data = vlbw, weights = wts)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -0.0103096 -0.0023745 0.0003931 0.0026713 0.0105881
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0074464 0.0017699 4.207 4.39e-05 ***
## pctPOV 0.0275036 0.0068742 4.001 9.80e-05 ***
## isolation 0.0114604 0.0015850 7.231 2.15e-11 ***
## pctNOIns_Fem 0.0032358 0.0120122 0.269 0.788
## MCDLimited Access 1 0.0008278 0.0009327 0.888 0.376
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## MCDNo Access 0.0009929 0.0013909 0.714 0.476
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.004154 on 153 degrees of freedom
## Multiple R-squared: 0.4471, Adjusted R-squared: 0.429
## F-statistic: 24.74 on 5 and 153 DF, p-value: < 2.2e-16

In this case, it appears that (in the non-spatial results), the socio-material vari-
ables of poverty rate and segregation are strongly correlated with VLBW, but
conditional on those measures, there is no independent association of either
prevalence uninsured or living in a maternity care desert. You could carry out
routine regression diagnostics to evaluate extreme values, leverage, or normality
of the residuals.

10.3.2 Mapping residuals

But our purpose here is to extend the examination of model performance and
fit from simply aspatial to spatial context. The first easy step is to attach the
residuals of each model (m0 representing only the deviations of each county
VLBW rate from the overall mean; and m1 representing the deviation of each
county from the value predicted by covariates) to our data object and map them.
Specifically, because we used weighted linear regression to account for unequal
variance in estimates among counties, we extract the studentized residuals which
are residuals normalized to their variance. There is a function in the package
MASS for calculating studentized residuals (e.g. studres()).

vlbw$m0_resids <- studres(m0)
vlbw$m1_resids <- studres(m1)

There are many ways to visualize these data. For example we might simply be
interested in seeing the spatial distribution of all the residuals, both those at ex-
tremes as well as those near zero. Using the style = "quantile" accomplishes
this objective.
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Residuals should be represented with diverging color
palette
Remember what residuals are: deviations from an average ex-
pected value. If the predicted value is truly an average some
deviations should be positive, some should be negative, and some
should be zero (e.g. the same as predicted).
When we map values that have a central value (e.g. zero in this
case or 1 in the case of a ratio measure like RR or SMR), it is best
to use a diverging color palette. Below we specify RdYlGn, which
is diverging.
midpoint = 0 specifies the value of the neutral or central color.

tm_shape(vlbw) +
tm_fill(c('m0_resids', 'm1_resids'),

style = 'quantile',
palette = 'RdYlGn',
midpoint = 0) +

tm_borders() +
tm_layout(legend.position = c('RIGHT','top'),

inner.margins = c(0.02, 0.02, 0.02, 0.1),
legend.format = list(digits = 1))
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m0_resids
−2.8 to −0.8
−0.8 to −0.2
−0.2 to 0.2
0.2 to 0.6
0.6 to 3.5

m1_resids
−3.1 to −0.8
−0.8 to −0.1
−0.1 to 0.3
0.3 to 0.8
0.8 to 2.6

In these maps it appears that there is more spatial clustering of residuals in the
empty model (m0) than in the conditional model (m1). More specifically, there
appear to be clustered negative residuals in North Georgia (e.g. places where
the model predicted a higher rate than was observed) and positive residuals
in Southwest Georgia (e.g. places where the observed VLBW was higher than
predicted by the model).
In contrast the map on the right appears (qualitatively at least) to have less
clustering of county values. For some counties the prediction is better (e.g. closer
to zero), but for others it actually seems to be worse (e.g. further from zero).

10.3.3 Moran’s I tests on lm models

Recall from two weeks ago, that we used the global Moran’s I statistic to test
for spatial auto correlation. As a reminder, auto correlation refers to the de-
pendency (correlation) of the value of a measure in one place with the values of
the neighbors of that place. In the absence of spatial structure or clustering, we
expect spatial independence (e.g. the null hypothesis), and therefore evidence of
spatial auto correlation suggests departure from independence.
In linear regression we assume that conditional on the global mean (intercept),
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and the mean slope for covariates (beta estimates), the residual error is normally
distributed and independently distributed. That assumption can be checked
aspatially with plots of residuals, but this check can be extended to space by
applying the Moran’s I statistic to model residuals.

10.3.3.1 Creating spatial neighbors

Just as in past exercises, the definition of spatial neighbors can be critically im-
portant, and results are often sensitive to the choice (e.g. each choice represents
a different alternative hypothesis). The definition of neighbors is a definition
of which units are likely to interact with or depend on which others. Is it only
contiguous and adjacent units (as implied by Queen contiguity), or is it all units
within a certain sphere of influence, or is there some inverse distance relationship
that is continuous over space?

Here I use the Queen contiguity neighbor definition because a) it is convenient
and intuitive; and b) it is commonly used in spatial analysis. But to be clear,
it is not the only choice, and you as the analyst should always consider whether
there are better alternatives.

This code chunk combines several steps: first it creates an nb neighbor object;
and then, it takes the nb object and converts it to the listw object needed for
Moran’s I.

qnb_listw <- vlbw %>%
poly2nb() %>%
nb2listw()

10.3.3.2 lm.morantest() function

In the section on detecting general autocorrelation, we introduced several
function for calculating the global Moran’s I including moran.test() and
moranI.test(). These were appropriate for evaluating an observed data series
like the observed VLBW rate. In this instance, the residuals are modeled
estimates and thus require a different approach.

To evaluate spatial auto correlation of the residuals from a model we will use
the function lm.morantest() and its derivatives.

It would be possible, but incorrect, to extract the residuals from
the model (as we did above for mapping) and apply moran.test()
directly.
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lm.morantest(m0, listw = qnb_listw)

##
## Global Moran I for regression residuals
##
## data:
## model: lm(formula = rate ~ 1, data = vlbw, weights = wts)
## weights: qnb_listw
##
## Moran I statistic standard deviate = 4.6616, p-value = 1.569e-06
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I Expectation Variance
## 0.223521496 -0.005214700 0.002407732

lm.morantest(m1, listw = qnb_listw)

##
## Global Moran I for regression residuals
##
## data:
## model: lm(formula = rate ~ pctPOV + isolation + pctNOIns_Fem + MCD,
## data = vlbw, weights = wts)
## weights: qnb_listw
##
## Moran I statistic standard deviate = 0.56403, p-value = 0.2864
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I Expectation Variance
## 0.016003102 -0.011353497 0.002352452

There are several observations to make about the results above:

• The Moran’s I evaluating the degree of spatial auto-correlation among the
residuals for the unconditional model, m0 is 0.22 (p < 0.001). In other
words there is moderate clustering or spatial dependence in VLBW.

• The Moran’s I evaluating residuals for the conditional model (e.g. m1,
specifically adjusted for the 4 variables described) is 0.02 (p = 0.29).

• Looking back at the model summary for model m1 we see that the adjusted
𝑅2 was 0.43. That is to say these four variables ‘explain’ some, but not
all, of the between-county variation in VLBW.
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• Together these results suggest that the spatial patterns of clustering are
largely explained by the four variables, but the non-spatial patterns of
between-county differences are not fully explained.

• Said another way, model m1 describes a possible data generating process
that lead to spatial dependence or clustering, but model m1 does not
fully describe a data generating process for spatial heterogeneity in risk
among counties

Correlation is not causation
Whether the statistical patterns from the preceding results repre-
sent causal patterns versus spurious associations due to confound-
ing, selection, misclassification, or random error requires knowl-
edge and insight beyond the model output.
For instance it is possible that a set of variables “explains” the
spatial dependence or heterogeneity but those variables are only
proxies for other (possibly unmeasured) causal structures.

This process – in which sequential models with different variables included are
compared – is an exploratory approach to understanding not only the rela-
tionship between predictor and outcome variables, but the spatial patterning of
relationships. Variables that – when adjusted – decrease spatial auto correlation
are tapping into some aspect (or proxy) of the reason for clustering in the first
place.

Of course the fact that these four variables ‘explain’ the spatial autocorrelation
is not equivalent to these four variables being the causal data generating process.
To evaluate causation we would need to more fully investigate threats to causal
inference including individual-level, ecologic-level, and cross-level confounding.

10.3.4 Moran’s I tests on glm models

As mentioned in the previous section, the focus on linear regression, with its
underlying Gaussian probability distribution, is in contrast to our focus on dis-
tributional assumptions from the generalized linear exponential family including
Poisson and Negative Binomial. One reason is because many of the statisti-
cal tools for spatial auto correlation, developed in fields more accustomed to
normally-distributed continuous data, rather than count or binomial data com-
mon in epidemiology.

But is it possible to use tools like the Moran’s I statistic on residuals from GLM
models? Well there is certainly some reason to be cautious. As you may have
learned in biostatistics (or EPI III), the residuals from a GLM model (e.g. from
a logistic regression) do not behave like residuals from a linear model, in part
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because they are not normally distributed and may not be homoskedastic. Even
on the link scale (e.g. the logit or log scale), there are differences.

Because the glm model families do not fully meet the assumptions
of the linear model Moran’s I tests, the following section should
be seen as purely exploratory.

However, it is possible to examine deviance residuals from glm models, and
assess their degree of spatial auto correlation, and the locations of better or
worse model fit. To begin, we fit an unconditional and conditional Poisson
model to estimate the prevalence of very low birthweight by county.
Note that we are no longer weighting for population (e.g. TOT), because that is
incorporated directly into the Poisson model as an offset.

g0 <- glm(VLBW ~ 1 + offset(log(TOT)),
data = vlbw,
family = poisson())

g1 <- glm(VLBW ~ pctPOV + isolation + pctNOIns_Fem + MCD +
offset(log(TOT)),

data = vlbw,
family = poisson())

summary(g0)

##
## Call:
## glm(formula = VLBW ~ 1 + offset(log(TOT)), family = poisson(),
## data = vlbw)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.00696 0.01476 -271.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 409.27 on 158 degrees of freedom
## Residual deviance: 409.27 on 158 degrees of freedom
## AIC: 1081.6
##
## Number of Fisher Scoring iterations: 4
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summary(g1)

##
## Call:
## glm(formula = VLBW ~ pctPOV + isolation + pctNOIns_Fem + MCD +
## offset(log(TOT)), family = poisson(), data = vlbw)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.63412 0.08267 -56.058 < 2e-16 ***
## pctPOV 1.49965 0.29511 5.082 3.74e-07 ***
## isolation 0.64721 0.07094 9.123 < 2e-16 ***
## pctNOIns_Fem 0.24054 0.54309 0.443 0.658
## MCDLimited Access 1 0.04657 0.04188 1.112 0.266
## MCDNo Access 0.06040 0.06128 0.986 0.324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 409.27 on 158 degrees of freedom
## Residual deviance: 220.93 on 153 degrees of freedom
## AIC: 903.31
##
## Number of Fisher Scoring iterations: 4

As you examine the summary results, recall that because this is a Poisson re-
gression, the coefficients are on the log scale. So the 𝑒𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 is the background
prevalence/risk of VLBW, and 𝑒𝛽 represents the relative excess prevalence/risk
of VLBW for each 1-unit increase in the predictor variable.

10.3.5 Mapping glm residuals

First extract the deviance residuals from the glm objects:

vlbw$g0_resids <- resid(g0, type = 'deviance')
vlbw$g1_resids <- resid(g1, type = 'deviance')

Then map them:
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tm_shape(vlbw) +
tm_fill(c('g0_resids', 'g1_resids'),

style = 'quantile',
palette = 'RdYlGn',
midpoint = 0) +

tm_borders() +
tm_layout(legend.position = c('RIGHT','top'),

inner.margins = c(0.02, 0.02, 0.02, 0.1),
legend.format = list(digits = 1))

g0_resids
−4.8 to −1.4
−1.4 to −0.3
−0.3 to 0.3
0.3 to 1.0
1.0 to 5.1

g1_resids
−3.0 to −1.0
−1.0 to −0.1
−0.1 to 0.3
0.3 to 0.9
0.9 to 2.9

As we saw with the lm() models results above, there appears qualitatively to
be slightly more clustering or dependence in the left (unconditional, m0) map as
compared to the right (conditional or adjusted model, m1). Unlike the previous
set of maps, it appears that magnitude of the deviation of counties from the
predicted (e.g. the min and max of the residuals) is smaller in the adjusted
model.
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10.3.6 Moran’s I for glm

It turns out the lm.morantest() function will actually accept a glm model
object. That does not mean the use of Moran’s I on deviance residuals from a
glm model is interpretable in the same way as expected (e.g. hypothesis testing
is discouraged), but with caution it could be a useful exploratory tool.

lm.morantest(g0, listw = qnb_listw)

##
## Global Moran I for regression residuals
##
## data:
## model: glm(formula = VLBW ~ 1 + offset(log(TOT)), family = poisson(),
## data = vlbw)
## weights: qnb_listw
##
## Moran I statistic standard deviate = 4.5915, p-value = 2.201e-06
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I Expectation Variance
## 0.2284486189 -0.0002192915 0.0024803253

lm.morantest(g1, listw = qnb_listw)

##
## Global Moran I for regression residuals
##
## data:
## model: glm(formula = VLBW ~ pctPOV + isolation + pctNOIns_Fem + MCD +
## offset(log(TOT)), family = poisson(), data = vlbw)
## weights: qnb_listw
##
## Moran I statistic standard deviate = 0.067635, p-value = 0.473
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I Expectation Variance
## 0.0024999785 -0.0009614966 0.0026192872

Reassuringly, thee results using the Poisson model are quite consistent with the
weighted linear regression model in both the magnitude and statistical signifi-
cance of the Moran’s I test statistic.
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10.3.7 Final words

While we have not directly tackled spatial regression this week, we have illus-
trated how easily conventional aspatial regression models can be projected onto
space, assuming that the units of observation correspond to geographic places.
This exploratory and diagnostic approach greatly extends our understanding of
model relationships and can begin to answer the questions raised over the past
two weeks about why or how health data came to be clustered in space.

In the next two weeks we will build on this to more formally incorporate spatial
relationships into the model itself.



300CHAPTER 10. SPATIAL REGRESSION I: SPATIALIZING ASPATIAL REGRESSION RESIDUALS



Chapter 11

Spatial Regression II:
Spatial econometric
regression

11.1 Getting Ready

11.1.1 Learning objectives

Table 11.1: Learning objectives by weekly module

After this module you should be able to…
Compare and contrast the assumptions about inference using spatial
econometric regression models (e.g. spatial error, spatial lag model)
Use spatial econometric regression techniques to estimate and interpret
multivariable associations with epidemiologic data
Discuss applications that are amenable to meaningful analysis with spatial
econometrics, as well as applications where the method is not useful or
meaningful

301
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11.1.2 Important Vocabulary

11.2 Spatial Thinking in Epidemiology

11.2.1 Spatial econometric models: Putting dependence
right in the model

In Spatial Regression 1, we examined the spatial dependence left-over after
(e.g. residual to) conventional aspatial linear regression. The benefits of mul-
tivariable regression for answering epidemiologic questions are the ability to
summarize relationships conditional on possibly highly-dimensional covariate
patterns.

The use of Moran’s I statistics to test for presence of spatial auto correlation in
the residuals (errors) of multiply-adjusted models is a strategy for a) diagnosing
violations of model assumptions; and b) iteratively improving model specifica-
tion (variables selection) in an effort to explain measured variables as drivers of
clustered outcomes.

However, the mix of aspatial regression with spatial residual diagnostics limits
explanatory power for epidemiologically interesting spatial phenomenon. Specif-
ically, limitations of aspatial regression strategy are that it:

• Assumes that the full effects of exposures on outcomes are contained within
the boundaries of the unit of aggregation (e.g. neither ‘spills over’ or
‘spreads to’ neighboring regions affecting their rates). This is related to
the Stable Unit Treatment Value Assumption (SUTVA) in causal inference,
and also referred to as interference.

• Will still produce biased estimates of coefficients if residual autocorrelation
of the errors remains. In other words, if you add in all of the predictor
variables you have, and the Moran’s I statistic remains meaningfully high,
the regression coefficients are likely to be biased.

In this module, we extend these aspatial methods by inserting representations of
the data generating process that produces or explains auto correlation directly
into the regression model. The data generating process is the set of interactions,
relationships, and effects among people and their environments that give rise to
the actual observed data.

Therefore, by articulating a specific and testable data generating process, we
are trying to explicitly model the spatial processes at play in order to recover
unbiased (or less biased) covariate association estimates, but also to statistically
test and quantify for evidence of spatial spillover.

Spatial spillover refers to the phenomenon where the experiences in neighboring
units (e.g. their outcome rates or their exposure/covariate values) have a direct
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or indirect influence on the risks or rates in an index region. Spillover therefore
approximates the processes of contagion, diffusion, and propagation that could
occur with infectious diseases, environmental contaminants, and some social
processes including norms, knowledge, attitudes, and behaviors.

The potential evident in this class of spatial models – often termed spatial
econometrics models because of their development in economics – comes at
the cost of many assumptions, and increased importance of thoughtfulness on
the part of the epidemiologic analyst. There are both thorny statistical issues
involved, but also the perennial challenge of overlaying statistical issues on the
questions and interests of population sciences like epidemiology.

11.2.2 Comparing spatial econometric models

There are numerous regression models to quantify spatially correlated data.
In this module we introduce just three that have seen more use in economics,
sociology, and political science, but that are occasionally used in epidemiology.

Unfortunately, these methods are primarily developed for linear regression where
the outcomes (or really the errors conditional on all other aspects of the model)
are assumed to be normally and independently distributed. We can use these
models for spatial analysis of epidemiologic data if the ‘events’ being analyzed
are rates, risks, or prevalence that are plausibly normally distributed (note we
can still use population weighting of regions to account for heteroskedasticity in
variance due to varying population size).

For those interested, there are some Bayesian and other extensions to incorpo-
rate spatially-lagged predictors into generalized linear regression.

11.2.2.1 Spatially Lagged Outcome Model

The first econometric model to be introduced is sometimes called a ‘spatial lag
model’ because it includes the spatially lagged value of the neighbors outcome
(e.g. weighted average of the values of the outcome for all spatial neighbors) as
a predictor in the model.

In other words it suggests that the disease risk, rate, or prevalence in the neigh-
boring regions has a direct influence on the risk, rate, or prevalence inside the
index region. The easiest metaphor for this would be contagious infectious dis-
ease, where the number of infected neighbors could directly cause your own
infection incidence to rise due to contagion. While we have previously talked
about social contagion for understanding the spatial spread of disease, that
seems more plausible in the next model, where the exposures or predictors are
lagged.

The Spatial Lag Model can be represented like this:
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𝑌𝑖 = 𝜌𝑊𝑌−𝑖 + 𝛽𝑋𝑖 + 𝑒𝑖

To describe that model in words we have:

• The health event outcome, 𝑌𝑖 which is the value of a risk, rate, prevalence
in the 𝑖𝑡ℎ region

• The spatial correlation coefficient, 𝜌 quantifying the strength or magni-
tude of correlation between the average outcome in the neighbors with
the outcome in the index county, 𝑖, conditional on all other variables in
the model. The spatial correlation coefficient, 𝜌 is interpreted as other
correlation coefficients with a range from −1 to +1. Note that the value
𝜌 = 0 implies zero correlation (net of other covariates in the model) of
the neighbors outcome with the index region outcome; in this setting the
term effectively drops from the model because it is zero, resulting in a
conventional aspatial linear regression model.

• The spatial weights matrix, 𝑊 , is the same spatial weights construct used
in spatial Empirical Bayes and Moran’s I analyses. In other words it is the
mathematical summarization of which regions are neighbors with which.
Note that we use row-standardized weights to aid in interpreting the spatial
regression coefficient.

• The 𝜌𝑊 is specific to the values of the outcomes 𝑌−𝑖. In other words this is
about the regions that are not 𝑖, and specifically those who are neighbors,
as defined by 𝑊 (e.g. all non-neighbors have 𝑊 = 0 and thus drop out).

• The 𝛽𝑋𝑖 and 𝑒𝑖 have the same interpretation as they do in conventional
regression. Specifically, 𝛽 is the regression coefficient for the change in
the outcome 𝑌 for each 1-unit change in 𝑋, conditional on the spatially
lagged outcome, 𝜌𝑊𝑌−𝑖

11.2.2.2 Spatial Durbin Model

A natural extension to the Spatial Lag is a model where not only the outcome
or dependent variable are allowed to spillover from one region to another, but
the effects of the exposure or other independent covariates are similarly allowed
to spillover.

Conceptually, this model proxies a data generating process wherein the expo-
sures effect on health is not constrained to fall only within the boundaries of
a region and that region’s own outcome, but could also diffuse or spread to
influence the outcome in neighboring regions. This is relatively easy to imagine
with environmental and service-access predictors whose influence are unlikely
to arbitrarily end at boundaries.

For example there may be no hospital in my county, but there is one just across
the border in the next county. Therefore I am exposed to hospital access because
the service spills over to my county.
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The statistical description of the Spatial Durbin model looks much like the
Spatial Lag, with one addition:

𝑌𝑖 = 𝜌𝑊𝑌−𝑖 + 𝛽𝑋𝑖 + 𝛾𝑊𝑋−𝑖 + 𝑒𝑖

In this model the added components can be described in words like this:

• The spatial weights matrix, 𝑊 is identical in both locations: 𝜌𝑊𝑌−𝑖 and
𝛾𝑊𝑋−𝑖. In both instances it simply describes which regions are neighbors
(𝑊 > 0) and which are not neighbors (𝑊 == 0).

• There are two sets of covariates, 𝑋 in this model. The first (𝛽𝑋𝑖) refers
to the measured covariates, 𝑋 in the 𝑖𝑡ℎ region. In contrast the second
reference 𝛾𝑊𝑋−𝑖, refers to the values of 𝑋 that are not in the 𝑖𝑡ℎ region,
indicated by the 𝑋−𝑖 or ‘all regions that are not 𝑖’. More specifically this
is the lagged (averaged) values of the neighbors for all regions not-i but
also where 𝑊 > 0 (e.g. among neighbors).

• 𝛾 is the coefficient quantifying the magnitude and direction of the associ-
ation between the spatially-lagged covariates and the outcome.

11.2.2.3 Spatial Error Model

This final model is an alternative specification of the underlying reason for
the observed data patterns, the data generating process. In this model, the
assumption is that the reason for the observed spatial patterns of autocorrelation
in outcomes and/or residuals is not one of spillover (contagion) of outcomes from
one reason to the next, nor the spillover or diffusion of the effects of exposures
from one region on the outcomes of neighbors.

Instead, this model simply states that the reason is because of important missing
variables that themselves are spatially clustered. Therefore – until they can
be included in the model – the model residuals will also be clustered or auto
correlated. In other words this model assertion was the starting point in Spatial
Regression I. However, what is different here is that the Spatial Error model
articulates a statistical way to estimate valid and unbiased coefficients in spite
of (or conditional on) the dependent errors or residuals.

This is done in a manner familiar to those who have worked with correlated
data. The strategy is to explicitly model or account for the auto correlation as
a nuisance term in order that the other terms in the model can be estimated in
a conditionally unbiased way. The model form looks like this:

𝑌𝑖 = 𝛽𝑋𝑖 + 𝑢𝑖

𝑢𝑖 = 𝜆𝑊𝑢−𝑖 + 𝑒𝑖
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Essentially what this model does is give a place for the correlation to be modeled
(e.g. the residual correlation coefficient, 𝜆), in order that the remaining residual,
𝑒𝑖 can be assumed to be distributed 𝑁(0, 𝜎2)).
The interpretation of the correlation coefficient 𝜆 is similar to the spatial lag
correlation coefficient, 𝜌, in that each range from −1 to +1, with zero suggesting
no correlation (e.g. all units are spatially independent, conditional on variables
in the model).
What is different, however, is what is assumed to be spatially correlated. In
the spatial lag model, 𝜌 quantifies the strength of correlation of the outcome in
county 𝑖 with the average outcome in the set of ‘neighbor’ counties. In contrast,
the spatially lagged correlation 𝜆 quantifies the strength of correlation of ‘error’,
which is presumed to represent a mix of random error, and the contribution of
unmeasured or unobserved drivers of the spatial structure of the outcome.

11.2.3 Comparing and selecting spatial econometric mod-
els

Given the set of three competing models described above, how is the spatial
epidemiologist to choose? The best strategy is a mix of substantive knowledge
and theory that is specific to the scenario or question at hand, with careful and
cautious use of statistical testing to compare the model fit of competing models.
First, there are several assertions made by LeSage & Pace (2009) that consider
the consequences of a mis-match between whatever the true data generating
process might be (e.g. what is really happening in the world that gave rise to
the data), versus the data generating process approximated by the choice of one
of these models.

1. If the true data generating process is Spatial Error, any of the three models
will produce unbiased estimates of coefficients, although the Durbin and
Spatial Lag models may be less statistically efficient at doing so (e.g. pro-
duce unnecessarily large standard errors). So the answer will, on average,
be valid regardless of model choice, but only if the true reason for the spa-
tial clustering of residuals is because of missing or unobserved variables.

2. If the true data generating process is Spatial Lag, but the analyst selects a
Spatial Error model, the model coefficients could be biased and misleading.
In other words if there is a ‘contagious’ spread of the outcome producing
the dependence in the risk or rate of disease, but instead of appropriately
fitting a spatial Lag model, a spatial error model is fit, the estimates may
be biased.

3. Finally, if the true data generating process concerns direct spatial spread
of the outcome and spatial spillover of the exposures or predictors (e.g. as
suggested in the Durbin model), either the spatial Error or the Spatial
Lag model will be biased. In other words, failing to explicitly model the
spatial spillover of covariates can produce biased estimates.
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The take home message from these assertions is that the Spatial Durbin model
is a logical baseline or starting point in the absence of any specific substantive or
theoretical reason to prefer the other models. By comparing the spatial Durbin
model to the others, it is possible to test whether in fact there is any statistical
evidence for the spatial spillover of covariates.

The use of statistical testing to compare models will be reviewed in the next
tutorial section. However, briefly, it is possible to use likelihood ratio testing or
comparison of AIC of competing model forms to determine whether the model
fits the data better with one strategy or another.

11.3 Spatial Analysis in Epidemiology: Estimat-
ing spatial econometrics models

11.3.1 Package & Data

The packages are largely the usual suspects with one addition, the package
spatialreg. This package actually subsumed many functions from spdep. We
will still use spdep for neighbor & weights creation, but I will not load the
package directly because it has many function conflicts with spatialreg. We
will use the spdep:: notation to call it out when needed.

pacman::p_load(tidyverse, # For general data manipulation
sf, # For defining and handling spatial data
tmap, # For mapping
spatialreg) # For spatial econometric regression

Once again, we will use the Atlanta-area BRFSS 500-cities project census-tract-
based estimates of self-reported health behaviors and outcomes, merged with
some area-based indicators.

# Read in the dataset and remove tracts with missing values...
atl <- st_read('BRFSS_Atl.gpkg') %>%
na.omit()

The full data dictionary is in the Spatial Regression II section of the eBook.
Briefly, here are the variables we will focus on for this tutorial example:

Variable Description Source
FIPS Census tract ID
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Variable Description Source
PopulationCount Count of tract pop 500-cities, BRFSS
MENTALHLTH Prevalence poor mental health

> 14 days (18+)m
500-cities, BRFSS

PHYSHLTH Prevalence poor physical health
> 14 days (18+)

500-cities, BRFSS

ParkProximity_stdDistance to nearest park
(z-score)

Opportunity Index

Poverty_std Poverty rate (z-score) Opportunity Index
InstabilityStressSummed z-score from

Foreclosure & Vacancy
Derived from
Opportunity Index

geom Census tract polygon geom US Census bureau

11.3.2 Defining the study question

What follows is an abbreviated summary of specific questions (statistical and
epidemiologic), and their motivation. A more real-world scenario might include
additional measures, consideration of other sources of bias include misclassifi-
cation of exposure or outcome, selection bias, conventional confounding, and
ecologic bias related to the modifiable areal-unit problem.

11.3.2.1 The idealized ovarching question

The idealized overarching question is whether living in place characterized by
concentrated poverty and housing instability causes (e.g. increases or decreases)
poor mental health.

We specifically focus on these variables for their hypothesized contribution to
mental health:

• Poverty_std is the standardized poverty rate within each tract. We know
that spatial concentration of poverty is associated with numerous contex-
tual processes including services, stigma, and aspects of the built environ-
ment including walkability, food, and social environment. We therefore
might hypothesize that higher poverty is associated with higher preva-
lence of poor health. Because of the spatial patterning of poverty and its
relation to investment in built environment and services, we might also
hypothesize this variable could also have a spatial spillover effect on men-
tal health prevalence. In other words it is not only poverty in your own
tract, but living in an area where many adjacent tracts have high poverty
that causes harm.

• InstabilityStress captures the degree to which housing instability
(e.g. vacancy and foreclosures) occur in a neighborhood. Increased
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housing instability could be directly stressful for individuals, but could
also produce indirect anxiety and depression in residents in the area.

• ParkProximity_Std represents relative access to green space and parks.
Evidence is mixed as to whether proximity to green space is causally re-
lated to mental health, but we might hypothesize that if a relationship
exists, it is protective. We also might hypothesize that this is a predictor
that could have ‘spatial spillover’.

• PHYSHLTH captures the prevalence of poor physical health in each tract,
and is plausibly a direct cause of poor mental health. We might include
this as a possible confounder of the effect of interest, although it is also
plausible that physical and mental health have a more complex time-
varying feedback relationship.

This question is of public health relevance to the extent that spatial concen-
tration of poverty, housing policy, and urban design decisions are reproduced
through transportation, zoning, development, and housing policies (which them-
selves are theoretically quite modifiable), and the identification of place-based
determinants of health can imply place-based targeted intervention including
mental health screening and mental health services.

11.3.2.2 The (more) realistically answered overarching question

Generally, we cannot answer such an idealized overarching question with a single
study design or modality. Given the reliance on the cross-sectional, self-reported
BRFSS 500-cities project, our more realistic overarching question might be
whether the ecologic census-tract prevalence of self-reported poor mental health
is associated with poverty rates in a sub-region of the Atlanta metropolitan re-
gion, conditional on ecologically-measured confounders.

This more realistic question differs from the idealized version in
its de-emphasis on recovering causal effect estimates, acknowledg-
ment of ecologic (and in this case cross-sectional) measurement of
exposure, outcome, and covariates, and restriction to a possibly
unique sub-section of the metropolitan region.

11.3.2.3 Specific questions

Within this framework, we can generate several specific questions for which we
anticipate specific answers. This distinction between the overarching question
(which may have discrete quantitative answers, or often has qualitative answers),
and specific questions is important. The former clearly frames and motivates
the latter, but without the latter (specific questions) you may get lost in the
sea of statistical results without clarity on what you can and want to know.
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Below are just some possible questions that we can answer with these data. I
divide them (perhaps too simplistically) into statistical and epidemiologic ques-
tions simply to highlight the different emphasis of each field. In reality there is
clearly overlap in statistical and epidemiologic questions!

11.3.2.4 Statistical questions

1. Which data generating process (spatial error, lagged outcome, or lagged
outcome and covariates) best fits the data?

2. Is there residual auto correlation above and beyond that explained by
spatial auto regression terms?

3. Which spatial weights matrix best fits the data?

11.3.2.5 Epidemiologic questions

1. Is tract-level poverty or housing instability associated with poor mental
health, adjusting for candidate causal confounders detailed above?

2. Is there evidence of confounding of the target relationships by the candi-
date confounders using a change-in-estimates approach?

3. Assuming census tracts are a reasonable definition of local neighborhoods,
is spatial clustering of poor mental health primarily a function of missing
variables or of spatial contagion or spillover processes?

4. Does the association (if any) of poverty or housing instability with poor
mental health primarily defined by local effects (e.g. within-neighborhood)
or does poverty or housing instability in one place affect mental health in
neighboring places?

5. If there are spillover effects of contextual covariates, how important are
the direct as compared with indirect effects?

6. Do the spatial relationships between contextual covariates and poor men-
tal health depend on (vary by) the definition of local and the inter-
connectedness of places?

11.3.3 Defining competing definitions of local

We have emphasized at several points throughout the semester that one funda-
mentally important decision in spatial analysis is the specification of the spatial
weights matrix which is the mathematical encoding of our belief about spatial re-
lationships between study units of observation. The spatial neighbors are those
geographic units believed to share experience or interact with one another, and
are differentiated from units unlikely to do so.

Whether regional units (or really the inhabitants of those regions) interact de-
pends on the question at hand. For instance the experience of sharing access to
a primary health care center likely occurs at relatively small scale (small set of
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neighborhoods primarily depend on that clinic). In contrast, when looking at
access to liver transplantation services or other highly-specialized referral care,
the scope of local is quite different, with a much geographically more far-flung
range of places willing to access that health resource.

In our question, the spatial conceptualization of the concentration of poverty
and housing instability is very important. We could quantify these variables
at the scale of individual household, or buildings (e.g. all families living in a
multi-family unit), or the census tract, or conglomerations of census tracts, and
so forth.

Poverty concentrated at larger areas (e.g. regions of the city including multiple
neighborhoods) likely looks different in terms of the social and environmental
context than micro-pockets of poverty (e.g. specific city blocks or apartment
complexes), and therefore may have different impacts on mental health. So
what is a reasonable definition of how much census tracts share or interact or
spread the experience of poverty and mental health?

11.3.4 Two extremes

The Queen contiguity definition of neighbors probably represents the lower
bound of connectedness possible with a given set of geographic boundaries
(e.g. we can’t estimate apartment building values because we only have cen-
sus tracts).

But might interactions occur beyond the bounds of the contiguous census tracts?
Perhaps. Might interactions be as likely to occur 10 miles away as 1 mile away?
Unlikely (but not impossible). K-nearest neighbors is a definition that lets
us flexibly scale up the size of the spatial connection network.

As a quick review, let’s create several competing spatial weights matrices under
competing definitions of spatial neighbors. As mentioned above, the package
we will use for spatial regression (spatialreg) has several conflicts with the
package containing functions for creating neighbors (spdep). For that reason
we did not load the package spdep above, but instead call it explicitly here
using the double-colon notation below.

Queen contiguity weights:

# Create a Queen Contiguity weights objects
queen <- atl %>% # start with sf object
spdep::poly2nb() %>% # convert polygons to neighbor object
spdep::nb2listw() # convert nb object to spatial weights

# NOTE: nb2listw() creates row-standardized weighted by default
# That is what we want for spatial regression



312CHAPTER 11. SPATIAL REGRESSION II: SPATIAL ECONOMETRIC REGRESSION

As a somewhat extreme alternative, here I create a k-nearest neighbor spatial
weights assuming that interaction occurs between each tract and their 15 near-
est neighbors!

# Create a 15 tract k-nearest neighbor weights object
knn15 <- atl %>% # start with sf object
st_centroid() %>% # get the centroid of each tract
st_coordinates() %>% # create matrix of x,y coordinates for that centroid
spdep::knearneigh(k=15) %>% # use spdep to find 15 nearest neighbors
spdep::knn2nb() %>% # convert that into a formal nb object
spdep::nb2listw() # and finally convert the nb into a spatial weights object

Now, let’s plot the two versions to visualize the range of connectivity being
hypothesized (this code is borrowed from Disease Mapping 1):

# Create centroids object
atl.cent <- st_centroid(st_geometry(atl))

par(mfrow = c(1,2))
plot(st_geometry(atl), main = 'Queen', border = 'grey')
plot(queen, coords = atl.cent, add = T)
plot(st_geometry(atl), main = 'KNN 15', border = 'grey')
plot(knn15, coords = atl.cent, add = T)
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Queen KNN 15

Clearly the k-nearest neighbors provides a denser connectivity matrix with more
neighbors than does the Queen contiguity.

11.3.5 Fitting multivariable regression models

11.3.5.1 Spatial or aspatial?

Because this is a different model from previous weeks, we should not assume
that the aspatial model is necessarily a poor choice. Fitting and summarizing
the results – including assessment of spatial auto correlation of residuals– should
always be a starting point before moving on to spatial econometric regression.

# Fit unconditional mean (empty) model using conventional regression
m0 <- lm(MENTALHLTH ~ 1,

data = atl)
# Fit conventional aspatial linear regression with predictors
m1 <- lm(MENTALHLTH ~ Poverty_std + InstabilityStress + ParkProximity_std + PHYSHLTH,

data = atl)
summary(m1)
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##
## Call:
## lm(formula = MENTALHLTH ~ Poverty_std + InstabilityStress + ParkProximity_std +
## PHYSHLTH, data = atl)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7934 -0.7675 -0.1878 0.6420 3.9312
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.57191 0.33031 16.869 <2e-16 ***
## Poverty_std 1.12808 0.10492 10.752 <2e-16 ***
## InstabilityStress -0.05725 0.05310 -1.078 0.2824
## ParkProximity_std 0.53791 0.25446 2.114 0.0359 *
## PHYSHLTH 0.46897 0.02883 16.269 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.198 on 180 degrees of freedom
## Multiple R-squared: 0.9004, Adjusted R-squared: 0.8982
## F-statistic: 406.8 on 4 and 180 DF, p-value: < 2.2e-16

Review the results above and take note of the magnitude and direction of as-
sociations. Remember our primary question focuses on poverty and housing
instability.

NOTE:
One measure of model fit is reported: 𝑅2 = 0.9. That is extremely
high and may be related to the way in which the BRFSS 500-cities
small area data are created: it is a small area modeling process in
its own right, and the included variables may overly explain one
another when jointly considered.
We will ignore that fact for the purposes of this exercise, but I
point it out to suggest some caution with such optimistic looking
fit statistics!

To diagnose spatial auto correlation in the model residuals we repeat proce-
dures from two weeks ago. I try the procedure for both the Queen contiguity
weights and the 15-nearest neighbors. You can extend this to other intermediate
specifications.
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# First compare the empty model to the adjusted model using Queen neighbors
spdep::lm.morantest(m0, listw = queen)

##
## Global Moran I for regression residuals
##
## data:
## model: lm(formula = MENTALHLTH ~ 1, data = atl)
## weights: queen
##
## Moran I statistic standard deviate = 16.515, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I Expectation Variance
## 0.725418358 -0.005434783 0.001958399

spdep::lm.morantest(m1, listw = queen)

##
## Global Moran I for regression residuals
##
## data:
## model: lm(formula = MENTALHLTH ~ Poverty_std + InstabilityStress +
## ParkProximity_std + PHYSHLTH, data = atl)
## weights: queen
##
## Moran I statistic standard deviate = 4.2186, p-value = 0.00001229
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I Expectation Variance
## 0.167610084 -0.015323958 0.001880378

# Now compare the empty model to the adjusted model using KNN15
spdep::lm.morantest(m0, listw = knn15)

##
## Global Moran I for regression residuals
##
## data:
## model: lm(formula = MENTALHLTH ~ 1, data = atl)
## weights: knn15
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##
## Moran I statistic standard deviate = 26.168, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I Expectation Variance
## 0.6245066933 -0.0054347826 0.0005795126

spdep::lm.morantest(m1, listw = knn15)

##
## Global Moran I for regression residuals
##
## data:
## model: lm(formula = MENTALHLTH ~ Poverty_std + InstabilityStress +
## ParkProximity_std + PHYSHLTH, data = atl)
## weights: knn15
##
## Moran I statistic standard deviate = 4.9199, p-value = 4.33e-07
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I Expectation Variance
## 0.0956392273 -0.0129261292 0.0004869422

Two things are suggested from the results above:

1. There is relatively large spatial autocorrelation in the prevalence of poor
mental health in the unconditional mean model regardless of neighbor
choice. In both cases, the inclusion of predictor variables reduces the
magnitude of the Moran’s I statistic, meaning that these variables explain
some portion of the spatial auto correlation.

2. The spatial autocorrelation appears to be modestly stronger in both empty
and adjusted models for Queen contiguity as compared with 15 K-nearest
neighbors. This suggest the spatial scale of dependence or auto-correlation
is smaller with local highs and lows that are slightly masked or attenuated
when we pool more tracts together with the relatively larger KNN defini-
tion.

11.3.6 Spatial Error Model

The Spatial Error Model (SEM) posits that the measured covariates relate to
(act on) the outcome within each region independently (e.g. they don’t spillover
or act across boundaries). However, the model allows that something unmea-
sured (and within the areal unit of census tract) predicts the outcome and is
itself spatially patterned (not spatially random).
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The consequence is that the spatial auto correlation is a nuisance dependency
arising from that missing covariate. By intentionally or explicitly modeling the
error (e.g. by specifying and/or estimating the form of the dependency as part
of the model fitting process), we can achieve two objectives:

1. Quantify estimates of the residual dependency in the form of the correla-
tion coefficient 𝜆 (lambda); and

2. Estimate regression coefficients for the measured covariates that we hope
are no longer biased by the spatial dependence.

Remember, the assumed data generating process under the Spatial Error Model
is as follows:

𝑌𝑖 = 𝛽𝑋𝑖 + 𝑢𝑖

𝑢𝑖 = 𝜆𝑊𝑢−𝑖 + 𝑒𝑖

Where:

• 𝑌 is the vector of outcomes (prevalence of poor mental health in our case
for the 𝑖𝑡ℎ census tract);

• 𝑋 is a matrix of covariates (e.g. n = 185 census tracts x k = 1 intercept
+ 4 predictors);

• 𝛽 is a vector of coefficients, with 𝛽0 being the intercept; and
• 𝑢 is the error term.

In the SEM, the error term, 𝑢, is the sum of two components: first is the
spatially independent portion, 𝑒𝑖; and the second is the spatially auto
correlated portion induced by the spatially patterned missing variable(s). It is
expressed as the strength of the correlation, 𝜆 with the spatially-lagged measures
of 𝑢 as indicated through the spatial weights matrix 𝑊𝑢.

11.3.6.1 Fitting the Spatial Error Model

Here is code for fitting the SEM model using the Queen contiguity weights.
You can re-fit the model with alternative spatial weights matrices. The func-
tion, errorsarlm() stands for spatial autoregressive (SAR) linear model, and
it requires a formula defining the model, the dataset, and then the definition of
the spatial neighbors object.
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sem <- errorsarlm(MENTALHLTH ~ Poverty_std + InstabilityStress + ParkProximity_std + PHYSHLTH,
data = atl,
listw = queen)

summary(sem)

##
## Call:errorsarlm(formula = MENTALHLTH ~ Poverty_std + InstabilityStress +
## ParkProximity_std + PHYSHLTH, data = atl, listw = queen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.72726 -0.76110 -0.12242 0.69509 4.21695
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.315774 0.386667 13.7477 <2e-16
## Poverty_std 0.970541 0.106880 9.0807 <2e-16
## InstabilityStress -0.026098 0.055274 -0.4722 0.6368
## ParkProximity_std 0.429410 0.273470 1.5702 0.1164
## PHYSHLTH 0.499118 0.033517 14.8913 <2e-16
##
## Lambda: 0.41472, LR test value: 13.904, p-value: 0.00019236
## Asymptotic standard error: 0.093931
## z-value: 4.4152, p-value: 0.000010092
## Wald statistic: 19.494, p-value: 0.000010092
##
## Log likelihood: -286.4547 for error model
## ML residual variance (sigma squared): 1.2512, (sigma: 1.1186)
## Number of observations: 185
## Number of parameters estimated: 7
## AIC: NA (not available for weighted model), (AIC for lm: 598.81)

11.3.6.2 Interpreting SEM output

There are several bits of information one can glean from the output. Here is a
summary of some of the points:

1. The regression coefficients suggest that Poverty_std and PHYSHLTH are
significantly and positively associated with prevalence of poor mental
health. ParkProximity_std has a relatively large magnitude of associ-
ation but is not statistically significant, and InstabilityStress is not
associated.
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2. The interpretation of the coefficient Poverty_std is that – conditional
on other covariates and the error term – for each 1-standard deviation
increase in tract poverty rate, there is a 1% increase in prevalence of poor
mental health, and this association is statistically significant.

3. There is moderately strong (and statistically significant) spatial auto cor-
relation in the errors, as evidenced by an estimated 𝜆 = 0.41, 𝑝 < 0.001.

4. The log-Likelihood and AIC are reported, and the comparison of the AIC
from the Spatial Error Model (𝐴𝐼𝐶 = 587) as compared to the aspatial
linear model (𝐴𝐼𝐶 = 599) suggest better fit for the SEM (e.g. smaller
AIC is better fit).

11.3.7 Hausman test of coefficients

One statistical test specific to the use of the Spatial Error Model is the Hausman
Test. Recall that one concern with naively using aspatial regression in the
presence of underlying spatial auto correlation is that the regression coefficients
from the aspatial regression may be biased. The Hausman Test is a test of the
consistency of the regression coefficients in a Spatial Error Model compared to
the aspatial version. It does not test for spatial autocorrelation; instead
it tests for whether the coefficients are consistent.

Hausman.test(sem)

##
## Spatial Hausman test (asymptotic)
##
## data: NULL
## Hausman test = 14.781, df = 5, p-value = 0.01134

The significant test suggests that the regression coefficients from the SEM are
likely inconsistent with the coefficients from the aspatial model; in other words
there is evidence that the aspatial model coefficients are biased as compared to
the spatial error model.

11.3.8 Spatial Lag Model

The spatial lag model shifts the source of spatial auto correlation from the
error term (random effects) to the mean (fixed effects) portion of the model. In
particular, the Spatial Lag Model posits that a reason for spatial auto correlation
is the dependency between the outcome in one region and the average outcome
in all of the neighboring regions.
This dependency implies some form of spread of the outcome, as would be ex-
pected in infectious or contagious processes (my influenza affects your risk of
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influenza), but could be imagined in terms of social contagion (e.g. if smok-
ing were a behavioral outcome and my smoking affects your sense of normalcy
around smoking).

However it is not clear whether a spatially-lagged prevalence of poor mental
health should be contagious. Perhaps being in a place where everyone is de-
pressed affects your own depression?

While this statistical estimation cannot guarantee that contagion is at play in the
real world, the notion of spatially-lagged outcomes is interesting and compelling
from epidemiologic and public health perspective, as it suggests something about
the spread or diffusion of the outcome, and may imply intervention is needed
not only to change environmental risk factors, but to break the propagation
from one person (or unit) to another.

Remember, the data generating process for the SLM is as follows:

𝑌𝑖 = 𝜌𝑊𝑌−𝑖 + 𝛽𝑋𝑖 + 𝑒𝑖

where 𝑌 and 𝑋𝛽 are the same as in the SEM above, and 𝑒𝑖 is a spatially-
independent residual error term. The new coefficient in this model is 𝜌, which is
the correlation coefficient estimating the degree to which the mean outcomes of
one’s neighbors (as captured spatially via the spatial weights matrix as 𝑊𝑌−𝑖)
is itself a predictor of the local outcome.

Assuming the spatial weights matrix, 𝑊 is row-standardized, then −1 < 𝜌 < +1
with 𝜌 = 0 meaning no spatial auto correlation between outcomes.

The function lagsarlm() in the package spatialreg fits both the Spatial Lag
Model as well as the Spatial Durbin Model (below). The use of Durbin =
FALSE distinguishes the SLM, which only has spatially-lagged outcomes, but
not covariates.

slm <- lagsarlm(MENTALHLTH ~ Poverty_std + InstabilityStress + ParkProximity_std + PHYSHLTH,
data = atl,
listw = queen,
Durbin = F)

summary(slm)

##
## Call:lagsarlm(formula = MENTALHLTH ~ Poverty_std + InstabilityStress +
## ParkProximity_std + PHYSHLTH, data = atl, listw = queen, Durbin = F)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.95397 -0.77812 -0.14108 0.68593 3.41057
##
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## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.595551 0.507521 9.0549 < 2e-16
## Poverty_std 1.056327 0.103725 10.1839 < 2e-16
## InstabilityStress -0.102273 0.055872 -1.8305 0.06718
## ParkProximity_std 0.430945 0.249558 1.7268 0.08420
## PHYSHLTH 0.419326 0.036375 11.5280 < 2e-16
##
## Rho: 0.14362, LR test value: 5.6967, p-value: 0.016996
## Asymptotic standard error: 0.060921
## z-value: 2.3574, p-value: 0.018403
## Wald statistic: 5.5574, p-value: 0.018403
##
## Log likelihood: -290.5585 for lag model
## ML residual variance (sigma squared): 1.3492, (sigma: 1.1616)
## Number of observations: 185
## Number of parameters estimated: 7
## AIC: 595.12, (AIC for lm: 598.81)
## LM test for residual autocorrelation
## test value: 6.9746, p-value: 0.0082677

11.3.8.1 Interpreting SLM Output

There are some similarities and some differences in the output of the spatial lag
as compared with spatial error models:

1. The regression coefficients do not appear substantially different in magni-
tude or sign from the SEM, with the possible exception of housing insta-
bility which appears to have a larger coefficient and smaller (albeit still
non-significant) p-value.

2. Instead of the 𝜆 coefficient, this model now reports the spatial lag term,
𝜌 = 0.14, 𝑝 = 0.017. This suggests that there is only modest spatial
dependence in the outcome (small, statistically significant 𝜌).

3. The AIC for the SLM is smaller than the AIC for the aspatial linear
model, suggesting some improvement in fit by including the spatial auto
correlation.

4. There is significant, residual spatial auto correlation in the errors (e.g. 𝑝 =
0.008), conditional on the covariates in the model and the spatially-lagged
𝜌 coefficient.

11.3.8.2 Model fit statistics

We can use Likelihood Ratio Tests to compare the fit of pairs of models. Here
we can formally test two questions:
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1. Does the spatial lag model fit better than the aspatial regression model?

LR.Sarlm(m1, slm)

##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = -5.6967, df = 1, p-value = 0.017
## sample estimates:
## Log likelihood of m1 Log likelihood of slm
## -293.4069 -290.5585

ANSWER: Yes. (p-value for difference in fit = 0.017)

2. Does the spatial lag model fit better than the spatial error model?

# instead we can compare AIC for each model
AIC(sem, slm)

## df AIC
## sem 7 586.9095
## slm 7 595.1170

ANSWER: The spatial error model appears to have a slightly smaller AIC
than the spatial lag model suggesting it (the spatial error model) fits better.

11.3.9 Spatial Durbin Model

The Spatial Durbin Model extends the Spatial Lag Model by allowing not only
the outcome, but also the covariates to spillover from one region to the next.

While the notion of spatial lag suggests contagion because it is about outcomes
causing outcomes, the spillover effect of covariates is more broadly applicable.
The implication of external effects of covariates is simply that their impact
is felt beyond the (possibly arbitrary) boundaries of geographic regions. This
could occur from environmental drift (e.g. via air or water), or through spatial
mobility of individual from their home location to nearby locations.

Remember, the mathematical form of this data generating process extends the
SLM by adding spatially-lagged 𝑋 as well as 𝑌 variables:
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𝑌𝑖 = 𝜌𝑊𝑌−𝑖 + 𝛽𝑋𝑖 + 𝛾𝑊𝑋−𝑖 + 𝑒𝑖

where 𝛽𝑋𝑖 models the within-region effects of covariate 𝑋, and 𝛾𝑊𝑋−𝑖 models
the spillover or spatially-lagged effects of 𝑋−𝑖 (e.g. spatially lagged average of
the 𝑋 values that are not in region 𝑖) on the spatial neighbors indicated by 𝑊 .

11.3.9.1 Fitting the Spatial Durbin Model

The code for fitting the Spatial Durbin Model only differs from the SLM code
by changing the model to Durbin = TRUE.

sdm <- lagsarlm(MENTALHLTH ~ Poverty_std + InstabilityStress + ParkProximity_std + PHYSHLTH,
data = atl,
listw = queen,
Durbin = T)

summary(sdm)

##
## Call:lagsarlm(formula = MENTALHLTH ~ Poverty_std + InstabilityStress +
## ParkProximity_std + PHYSHLTH, data = atl, listw = queen, Durbin = T)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.065250 -0.702557 -0.077417 0.528628 4.017753
##
## Type: mixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.369455 0.787175 5.5508 2.844e-08
## Poverty_std 0.909306 0.113223 8.0311 8.882e-16
## InstabilityStress -0.023942 0.063633 -0.3763 0.70673
## ParkProximity_std 0.275745 0.310209 0.8889 0.37406
## PHYSHLTH 0.542647 0.043181 12.5667 < 2.2e-16
## lag.Poverty_std 0.430300 0.262114 1.6417 0.10066
## lag.InstabilityStress -0.227807 0.117749 -1.9347 0.05303
## lag.ParkProximity_std -0.096726 0.563610 -0.1716 0.86374
## lag.PHYSHLTH -0.294494 0.071865 -4.0979 4.169e-05
##
## Rho: 0.34143, LR test value: 10.337, p-value: 0.0013041
## Asymptotic standard error: 0.098766
## z-value: 3.457, p-value: 0.00054623
## Wald statistic: 11.951, p-value: 0.00054623
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##
## Log likelihood: -280.3087 for mixed model
## ML residual variance (sigma squared): 1.1849, (sigma: 1.0885)
## Number of observations: 185
## Number of parameters estimated: 11
## AIC: 582.62, (AIC for lm: 590.95)
## LM test for residual autocorrelation
## test value: 0.19933, p-value: 0.65526

11.3.9.2 Interpreting SDM output

Again, there are similarities and differences in the output compared to the
preceding model forms.

1. The coefficient table includes the same within-region fixed effects as before;
these are the 𝛽𝑋𝑖 values from the data generating process above.

2. The coefficient table now also includes the spatially-lagged versions of each
covariate, representing the 𝛾𝑊𝑋−𝑖. These are the associations between
spatially lagged and averaged neighboring units 𝑋 covariates on own-unit
outcomes, controlling for other covariates. In the results above these are
indicated by the prefix lag.xxx.

3. The same 𝜌 coefficient is estimated in this model, but now the value is
𝜌 = 0.34, 𝑝 = 0.001, suggesting that, conditional on the spatially-lagged
covariates, there is now stronger correlation between outcomes in neigh-
boring regions and own-region outcomes.

4. The AIC of 583 for the SDM is smaller than the AIC of 591 for the aspatial
regression (and also smaller than the SLM and SEM models)

5. There is no significant residual auto correlation (e.g. 𝑝 = 0.65)

In more qualitative terms, here are two example interpretations:

• Poverty has both a direct effect and a spillover effect, in each case associ-
ated with higher prevalence of poor mental health

• Prevalence of poor physical health is positively correlated with poor men-
tal health within the census tract, but that is somewhat offset by an inverse
association between neighboring tracts prevalence of poor physical health.

11.3.9.3 Model fit statistics

Once again, we can check Likelihood Ratio Tests to assess model fit.

1. Does the Durbin model fit better than aspatial regression?
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LR.Sarlm(m1,sdm)

##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = -26.196, df = 5, p-value = 0.00008174
## sample estimates:
## Log likelihood of m1 Log likelihood of sdm
## -293.4069 -280.3087

ANSWER: Yes. The spatial Durbin model fits better.

2. Does the Durbin model fit better than the SEM?

LR.Sarlm(sdm, sem)

##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 12.292, df = 4, p-value = 0.01531
## sample estimates:
## Log likelihood of sdm Log likelihood of sem
## -280.3087 -286.4547

ANSWER: Yes. The Spatial Durbin model fits at least somewhat better than
the SEM.

3. Does the Durbin model fit better than the SLM?

LR.Sarlm(sdm, slm)

##
## Likelihood ratio for spatial linear models
##
## data:
## Likelihood ratio = 20.5, df = 4, p-value = 0.0003978
## sample estimates:
## Log likelihood of sdm Log likelihood of slm
## -280.3087 -290.5585
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ANSWER: Yes. The spatial Durbin model appears to fit best of all of the
models.

NOTE:
In this particular case the Spatial Durbin model appears to be
the best fitting. This fact, combined with the fact that we antici-
pate that a Durbin model provides the best opportunity to return
statistically unbiased coefficient estimates is meaningful.
However, note results are a function of the particular variables
included. In alternate model specifications of these same data,
the Durbin model does not fit best. Do not assume that Durbin is
always the best fitting model.

11.3.10 Comparing Models

There are many things to hold in mind at once when comparing spatial econo-
metric models:

1. If one model better conceptually represents the question of interest or the
process in play, that is noteworthy. For example, many epidemiologists
argue for selecting covariates based on plausible role as contributing to
bias from confounding (e.g. as determined from prior knowledge, DAG),
rather than by using model fit statistics.

2. If the underlying data generating process is not clear, the best chance for
unbiased estimates of the regression coefficients comes from the Spatial
Durbin Model.

3. The model fit statistics provide ancillary information about how well dif-
ferent specifications of the data generating process fit the observed data.
These fit statistics may be all you have to go on, and are important sources
of information. However, you should note that fit statistics are specific to
the inputs provided, including the specification of model covariates, and
the choice of spatial weights. Thus, a single comparison of fit statistics
does not necessarily settle the issue.

11.3.11 Impact Assessments

In the setting in which either the Spatial Lag Model or the Spatial Durbin Model
were of interest, it is important to note that the coefficients cannot be interpreted
in the conventional manner to which we are accustomed in regression.

The reason is that the presence of spatial spillover represented by either the
𝜌 coefficient for spillover of the outcome, or the 𝛾 coefficients for spillover of
the covariates, means that any change in an 𝑋 variable does not only affect
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the 𝑌 within that single region. Instead it has direct and indirect impacts
that spread (or propagate or ripple) through the system defined by the spatial
weights matrix.

To quantify the effects in the context of this echo or feedback, formal definitions
of statistical impacts have been defined to capture the reverberations of effects
transmitted through the system as a function of the strength of the correlation
coefficients.

impacts(sdm, listw = queen)

## Impact measures (mixed, exact):
## Direct Indirect Total
## Poverty_std 0.96236964 1.071752764 2.0341224
## InstabilityStress -0.04084631 -0.341421083 -0.3822674
## ParkProximity_std 0.27556056 -0.003729526 0.2718310
## PHYSHLTH 0.53482319 -0.158016271 0.3768069

The results decompose the impact of changes in each 𝑋 covariate into the the
Direct and Indirect component.

1. The average Direct Impact is the effect, averaged across all regions, of a
change in a predictor covariate (e.g. exposure) in 𝑟𝑒𝑔𝑖𝑜𝑛𝑖 on the outcome
in 𝑟𝑒𝑔𝑖𝑜𝑛𝑖, accounting for the fact that changing local exposure might
spillover to change neighbors outcomes, which might echo back and affect
local outcomes.

2. The average Indirect Impact is the effect, averaged across all regions, of
a change in a neighbors (e.g. 𝑟𝑒𝑔𝑖𝑜𝑛𝑗) predictor covariate on the local
outcome in 𝑟𝑒𝑔𝑖𝑜𝑛𝑖.

3. The Total Impact is the sum of the direct and indirect impacts.

From the results above, we can see that the Total Impact of Poverty_std is
2, with a direct impact of 0.96 (higher poverty in my tract predicts higher
prevalence of poor mental health), and an indirect impact of 1.07 (higher poverty
in my neighbors tracts predicts additional higher prevalence of poor mental
health).

But is this impact significant? We can use Bayesian Markov Chain Monte Carlo
simulations to quantify the bounds of these impacts. To do so, we must simulate
the impacts() a large number of times (I actually only run a medium number
of times, R=199, for time efficiency; you could increase this number for more
prediction):
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sdm.impact <- impacts(sdm, listw = queen, R = 199)
summary(sdm.impact)

## Impact measures (mixed, exact):
## Direct Indirect Total
## Poverty_std 0.96236964 1.071752764 2.0341224
## InstabilityStress -0.04084631 -0.341421083 -0.3822674
## ParkProximity_std 0.27556056 -0.003729526 0.2718310
## PHYSHLTH 0.53482319 -0.158016271 0.3768069
## ========================================================
## Simulation results ( variance matrix):
## Direct:
##
## Iterations = 1:199
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 199
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Poverty_std 0.96792 0.11072 0.007848 0.008874
## InstabilityStress -0.04499 0.06127 0.004344 0.005542
## ParkProximity_std 0.28110 0.30046 0.021299 0.021299
## PHYSHLTH 0.53089 0.04381 0.003106 0.002674
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Poverty_std 0.7757 0.90735 0.9628 1.04167 1.16136
## InstabilityStress -0.1679 -0.08675 -0.0458 -0.01079 0.08273
## ParkProximity_std -0.2801 0.07429 0.2826 0.46981 0.90059
## PHYSHLTH 0.4468 0.50351 0.5309 0.56173 0.60573
##
## ========================================================
## Indirect:
##
## Iterations = 1:199
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 199
##
## 1. Empirical mean and standard deviation for each variable,
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## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Poverty_std 1.08119 0.35729 0.025327 0.025327
## InstabilityStress -0.34282 0.16756 0.011878 0.011878
## ParkProximity_std -0.02097 0.77569 0.054987 0.054987
## PHYSHLTH -0.15764 0.07647 0.005421 0.004607
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Poverty_std 0.4986 0.8080 1.08404 1.3131 1.77970
## InstabilityStress -0.6844 -0.4527 -0.34090 -0.2303 -0.03131
## ParkProximity_std -1.5154 -0.5073 -0.06971 0.4794 1.47789
## PHYSHLTH -0.3221 -0.1964 -0.15637 -0.1056 -0.01552
##
## ========================================================
## Total:
##
## Iterations = 1:199
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 199
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Poverty_std 2.0491 0.36211 0.025669 0.028605
## InstabilityStress -0.3878 0.16944 0.012012 0.012012
## ParkProximity_std 0.2601 0.72992 0.051743 0.051743
## PHYSHLTH 0.3733 0.06303 0.004468 0.004468
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Poverty_std 1.4142 1.7885 2.0429 2.2695 2.74413
## InstabilityStress -0.7525 -0.5067 -0.3887 -0.2622 -0.09364
## ParkProximity_std -1.1004 -0.2229 0.3215 0.7350 1.64980
## PHYSHLTH 0.2399 0.3382 0.3715 0.4076 0.49375

From this we can see that the both the direct and the indirect impacts of
Poverty_std and PHYSHLTH appear significantly different from zero (at least
when I ran it…the specific numbers depend on the random seed and the num-
ber of samples drawn). Furthermore, the indirect effect of InstabilityStress
appears to be significantly different from zero based on the 95% confidence
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intervals not overlapping zero.
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Table 11.2: Vocabulary for Week 11

Term Definition

Data generating process

The true underlying causal
structure that gives rise to
(generates) the data from which
you sampled. The data
generating process is not
typically known. We use models
to try to emulate or approximate
the data generating process.

Spatial Durbin model

Spatial econometric model in
which sptaially lagged summary
of neighbors values of the
*covariates* and of the
*outcome*. Spatially lagged
covariates suggest exposure in
neighboring places affects
outcome in index location.

Spatial Econometrics

A sub-field of statistics bridging
econometrics and spatial
analysis, wherein theoretical
properties, dependencies, and
interactions of spatially
referenced data are analyzed in a
regression framework.

Spatial error model

Spatial econometric model in
which unmeasured or unobserved
spatially clustered predictors of
the outcome produce residual
autocorrelation in regression
model residuals that is not
accounted for by the main effects
of measured covariates

Spatial lag model

Spatial econometric model in
which a spatially lagged sumary
of neighbors values of the
dependent (outcome) variable is
included on the right-hand side
of the model. This pattern
theoretically suggests a diffusion
or contagion process of the
*outcome*

Spatially lagged variable

The weighted sum or weighted
average of the neighboring values
for that variable. The variable
could be a spatially lagged
outcome or spatially lagged
covariate/predictor
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Chapter 12

Spatial Regression III:
Geographically Weighted
Regression

12.1 Getting Ready

12.1.1 Learning objectives

Table 12.1: Learning objectives by weekly module

After this module you should be able to…
Explain and relate spatial non-stationarity to epidemiologic concepts of
heterogeneity
Use geographically weighted regression to produce and interpret
epidemiologic parameters from point and polygon data

333



334CHAPTER 12. SPATIAL REGRESSION III: GEOGRAPHICALLY WEIGHTED REGRESSION

12.1.2 Important Vocabulary

12.2 Spatial Thinking in Epidemiology

12.2.1 Non-stationarity and spatially varying relation-
ships

The latter half of the course has focused on how to estimate, describe, and
test for epidemiologically relevant spatial structure or spatial heterogeneity in
population health data. Briefly these have been the topics covered following the
introductory Epidemiologic Cartography module:

1. Disease mapping of spatial heterogeneity to describe epidemiologi-
cally meaningful patterns of disease over space, possibly even in the pres-
ence of sparse data that reduces certainty and precision of estimates. The
tools of disease mapping focused on stabilizing and smoothing parameter
estimates, possibly in formal testing for statistical deviation from expec-
tations, and contrasting local rates to global rates (e.g. SMRs).

2. Global and local spatial auto correlation as ways to describe the ten-
dency for univariate data (e.g. health outcomes) to be spatially dependent.
These tests described the degree to which (and in the case of local tests,
the location where) outcomes clustered in space. Spatial auto correlation
is a fundamental characteristic of spatial structure, and thus very useful in
exploring and describing data. Importantly, testing for spatial auto cor-
relation does not explain why population events are spatially dependent
or clustered.

3. Spatial scan statistics were a class of tests designed as an alterna-
tive (or complementary) tool for testing for the presence of spatially-
clustered health events. While spatial auto correlation tested explicitly
for spatial-dependence between locations, spatial scan statistics tested for
statistically unusual extreme rates or risks of disease within arbitrarily
small/large search windows. In that way spatial scan statistics describe
spatial structure through the lens of spatial homogeneity (constant risk) or
heterogeneity. However, spatial scan statistics share with spatial auto cor-
relation statistics the lack of explanatory insight as to how or why disease
intensity varies in space.

4. Spatial auto correlation tests of aspatial regression residuals was
the first step towards describing spatial structure as a function of multi-
dimensional (multiple variable) predictors. By fitting multivariable regres-
sion models that could include predictors that might explain the reason
for spatial structure, this approach began the intersection of multivariable
regression with spatial structure. This approach to spatializing aspatial
regression is a useful exploratory or diagnostic step, which could result in
insight to understand why or how spatial structure is generated. However,
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often residual spatial auto correlation in residuals exists after inclusion of
important measured variables, and the question remains: What produces
residual dependence?

This brings us to geographically weighted statistics. While the order of topics
covered above is written in a somewhat hierarchical or linear-sequential manner
(each step follows and expands on the preceding), the course of analysis is not
always this way. In particular, geographically weighted statistics are not the
culmination of all spatial analysis to date, but instead represent an alternative
way to view the data generating process.

The data generating process ideally refers to the the biological,
social, and ecologic mechanisms and processes that collectively
give rise to or generate the data we observed.
We often use statistical models to approximate what we believe
is the underlying process that generated data. To the extent that
we correctly describe the data generating process that gave rise to
the data, we can most efficiently (and validly) carry out analysis
on the observed data.

12.2.2 Introducing geographically weighted regression

Stationarity is the assumption that a statistic or parameter estimate is, on
average, constant or homogeneous across samples. By extension, spatial sta-
tionarity is the assumption that a statistic for a given study region is constant
regardless of the spatial location.

Examples of spatial non-stationarity were previously introduced with geo-
graphically weighted summary statistics (e.g. in Disease Mapping 3), and more
generally with the idea of spatially heterogeneous mean intensity of disease, as
was tested with the spatial scan statistic or Poisson tests of excess risk. This
notion that some places have higher and some places have lower risk or rates
suggests that a single global statistic (e.g. the overall risk or rate) is not ade-
quate for describing the health of the population; instead a set of local statistics
are needed.

Spatially non-stationary disease intensity (e.g. spatial heterogeneity) is an ex-
ample of first order spatial variation. In this context, ‘first order’ refers to
the first statistical moment which is the mean expected value. So first order
spatial variation is a variation in the mean disease rate.

But we may also be interested in second order spatial variation, which refers
not to the mean, but to the covariance among variables. Therefore, second order
spatial processes reflect an interest in whether relationships among variables are
constant (global; stationary) or heterogeneous (local; non-stationary).
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Geographically weighted regression (GWR) is the natural extension to geo-
graphically weights summary statistics when we wish to go from single vari-
able mean intensity (first order process) to describe multivariable covariance
patterns (second order process) in space. GWR is quite simply multivariable
regression carried out iteratively with restrictions to specific geographic sub-sets
of the entire study region, with an interest in estimating not just a single set
of regression coefficients, 𝛽, but instead a set of coefficients with one for each
geographic sub-region (e.g. 𝛽𝑥,𝑦}).
Just as we had tools for statistically testing whether the spatial intensity
(e.g. rate, prevalence) of disease was homogeneous versus heterogeneous, we
can similarly use statistical tests to compare the fit of the global (stationary)
regression model to the fit of the local (non-stationary) model. If there is
evidence of better fit, even after penalty for multiple comparisons, then we can
proceed with interpreting results from the GWR.
Geographically weighted regression is therefore a powerful tool for further char-
acterizing or understanding the data generating process. It provides insight into
spatial relationships by:

a) permitting local analysis of multivariable relationships; and
b) statistically testing whether a single global model fits the data better or

worse than an ensemble of local models, even after penalizing for multiple
comparison.

While this tool represents a significant step forward in our ability as spatial
epidemiologists to understand spatial variation in population health – even ac-
counting for confounding and heterogeneity of effects – the methods have sev-
eral well-described limitations that collectively lead us to treat GWR as an
exploratory tool:

• Local multi-collinearity: Regression with highly colinear (highly cor-
related) predictor variables can produce statistically unstable regression
coefficients due to variance inflation. In a single global dataset there may
be sufficient distinction among variables to avoid this problem. How-
ever – because covariates may be spatially clustered – it is common that
collinearity is a greater problem when restricting to specific spatial sub-
regions. Thus, GWR estimates could suffer from variance inflation and
instability of beta coefficients.

• Multiple comparison: The analytic strategy of GWR is to re-fit a re-
gression model multiple times, once for each sub-region in a study area.
This quite reasonably raises concerns for multiple comparisons, particu-
larly if statistical hypothesis tests are being conducted.

• Model overfitting: A known concern in regression modeling is that co-
efficients can be biased when the model begins to describe the ‘random
error’ rather than the underlying relationships, reducing the generalizabil-
ity of coefficients. This can occur from including too many covariates for
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a given number of observations. Therefore the process of restricting the
geographic region for model fitting in GWR can lead to local overfitting.

• Local sensitivity to outliers: In global regression, we are aware that it
is possible for single extreme observations to have undue influence on the
estimation of regression coefficient. In linear regression, residual diagnos-
tics focus on influence statistics to diagnose this problem. With GWR,
the refitting of a model in multiple subsets of the data increases the risk
that at least some of the local fits will be unduly influenced by outlier
observations.

• Bandwidth selection: Just as we discussed when introducing kernel
density estimation in Disease Mapping, a key driver of results when us-
ing kernel density functions to smooth or weight data is the bandwidth.
Bandwidth is the radius of the kernel search area. In GWR, the kernel
bandwidth defines how many observations (and with what weight) will be
included in each local regression. A larger bandwidth will include more
of the total data, but will limit the amount of spatial variation in coeffi-
cients. In contrast a smaller bandwidth will include less data in each fit
but maximize the possible identification of local spatial variation.

12.2.3 Making epidemiologic meaning of spatially varying
coefficients

Although spatial heterogeneity has been a theme throughout this course, it may
not be obvious what exactly heterogeneity in regression coefficients means or
tells us as epidemiologists. One analogy – and to be clear it is only an imperfect
analogy and not an exact correspondence – is to conceive of spatially varying
regression coefficients as akin to statistical interaction in non-spatial models.

In epidemiology, a powerful and important concept for describing causal effects
of exposures or interventions on health outcomes, is that of effect measure mod-
ification. This is the idea that the causal effect of an exposure on the outcome
is not homogeneous (e.g. constant; stationary), but instead varies or depends on
the value of a second covariate (e.g. is heterogeneous or non-stationary). An
example of effect measure modification in non-spatial epidemiology would be if
the magnitude of the causal effect of a drug treatment for preventing death in
a given disease was larger in women as compared to men.

While it is common for analysts of epidemiologic data to incorporate interac-
tion terms in multivariable regression in an effort to identify and estimate effect
measure modification, it is important to recall that statistical interaction is not
always (or perhaps is rarely) equivalent to causal effect measure modification.
However, statistical interactions are tests for the idea of heterogeneity or vari-
ation in the magnitude (e.g. on an additive or multiplicative scale depending
on the model being fit) of relationship or association between predictor and
outcome.
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Therefore, interpreting the spatially varying coefficients from a geographically
weighted regression could be seen to be similar as interpreting the heterogeneous
correlation evidenced by a statistical interaction in a non-spatial model: it de-
scribes where and to what degree the association between exposure and outcome
differs or varies.

If the model identified a causal data generating process, statistical interaction
could indicate the presence of a form of spatial effect measure modification, or
identification of how something about location modifies the relationship between
exposure and outcome.

12.2.4 Distinguishing variation in prevalence from varia-
tion in correlation

One final conceptual challenge in interpreting spatially varying coefficients (and
for interpreting statistical interactions in general) is to be clear about the role
of spatially varying covariate prevalence as compared to the role of spatially
varying correlation of covariate with outcome.

The GWR describes geographic regions where the magnitude of association
between predictor/covariate and outcome is larger or smaller. However, that
should not be confused with the overall prevalence of the predictor in those
areas.

For example, examine the maps below illustrating the prevalence of smoking
and poor physical health in Atlanta census tracts (predictors or exposures; top
two panels) as compared to the strength of association between each covariate
and the outcome, poor mental health (bottom two panels).

The interpretation of regression coefficients in the bottom two maps is “the
change in 𝑌 for each one-unit change in 𝑋’. Therefore, what we see is that
the prevalence of poor mental health increases more for every 1-unit increase
in smoking prevalence in the southern part of the map as compared with the
northern. On the other hand the prevalence of poor mental health increases
more for every 1-unit increase in prevalence of poor physical health in census
tracts in the northern part of the map.

However, when combined with the prevalence information, we can see that
meaning of ‘one-unit change in 𝑥’ should be put in the context of the vari-
ation in the covariates themselves. While the magnitude of association between
poor physical health and poor mental health appears strongest in the north,
those census tracts actually have quite low prevalence of poor physical health.

The point of this illustration is to consider whether your interest is in rela-
tive variation in magnitude of association (e.g. interaction or non-stationarity
in the association), or the population impact which itself is related to base-
line prevalence. Either could be relevant, but considering both prevalence and
correlation/association provides more context.
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Figure 12.1: GWR: Prevalence vs. Correlation

12.3 Spatial Analysis in Epidemiology

12.3.1 Estimating geogrpahically weighted regression
models

12.3.1.1 Packages and Data

There are at least four packages that provide functions for geographically
weighted regression: McSpatial, gwrr, spgwr, and GWModel. We will be using
the latter package, GWModel as it has much of the functionality of others, with
additional diagnostic and model form capabilities.

pacman::p_load(tidyverse, # For data workflow
sf, # For managing spatial data class sf
sp, # For managing spatial data class sp
GWmodel, # For geographically-weighted statistics
raster, # For converting spatial grid to raster in final section
tmap) # For mapping results

The example in this tutorial uses data from the CDC PLACES project. These
data were developed in collaboration with Robert Wood Johnson Foundation

https://www.cdc.gov/places/index.html
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and CDC in an effort to increase availability of small-area health data. Briefly,
the project uses data from each state’s Behavioral Risk Factor Surveillance
System (BRFSS) survey to estimate small area (census tract) prevalence of a
limited set of BRFSS indicators. The estimation process employed by CDC
to create the dataset uses restricted-access geocodes, as well as some model-
interpolation assumptions.

The data are only available for more urbanized locations. I have included ex-
posure measures from other public-use data sets as indicated in the Data Dic-
tionary below.

These data are at the geographic level of census tracts (although 500-cities ac-
tually estimates down to the census block group). The values for each measure
(e.g. poor mental health, smoking, etc) are tract-specific prevalence. In other
words these are purely ecologic data, and thus all regression below is ecologic
analysis. While this has been true for most exercises this semester, it is partic-
ularly important to keep this fact in mind as we begin conducting multivariable
regression.

atl <- st_read('BRFSS_Atl.gpkg') %>%
na.omit() # na.omit() drops 2 tracts with missing variables

12.3.1.2 Data Dictionary

Variable Description Source
FIPS Census tract ID
PopulationCountCount of tract pop 500-cities, BRFSS
INSURANCE Prevalence uninsured

(18+)
500-cities, BRFSS

SMOKING Prevalence current
smoking (18+)

500-cities, BRFSS

MENTALHLTH Prevalence poor mental
health > 14 days
(18+)m

500-cities, BRFSS

MentalHlthCOUNT(Estimated) count of
poor mental health
>14 days

Calculated from 500-cities, BRFSS

PHYSHLTH Prevalence poor
physical health > 14
days (18+)

500-cities, BRFSS

ParkProximity_stdDistance to nearest
park (z-score)

Opportunity Index

Vacancy_std Prevalence vacant
housing (z-score)

Opportunity Index
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Variable Description Source
HealthAccess_std# Health facilities

within 2-miles (z-score)
Opportunity Index

Foreclosure_stdPrevalence foreclosure,
2010 (z-score)

Opportunity Index

Poverty_std Poverty rate (z-score) Opportunity Index
PovertyRate Poverty rate (%) USDA Food Access Research

Atlas
MedianFamilyIncomeMedian Income in tract

($)
USDA Food Access Research
Atlas

PctSeniors Ratio of seniors (65+)
to total population (%)

USDA Food Access Research
Atlas

InstabilityStressSummed z-score from
Foreclosure & Vacancy

Derived from Opportunity Index

geometry Census tract polygon
geom

US Census bureau

12.3.2 Preparing for using GWModel

Please note that you have already been introduced to the GWModel
package through the use of geographically weighted summary
statistics in Disease Mapping 3. You might revisit that section
(and the Part B lab from Disease Mapping 3), for a review of
using kernel density weighting to produce locally smoothed mean
intensity and correlation statistics.

The GWModel package has not been updated to accommodate sf class spatial
data in R yet. For that reason, it is necessary for us to convert the sf data
to the sp class. Furthermore, the way the kernel density estimator evaluates
which regions are versus are not in the ‘local’ region is by using a matrix of
the distances between the centroid of every pair of census tracts (e.g. this is
simply a different way of defining neighbors than what we used from the spdep
package).

While each function in GWModel can calculate this distance matrix on the fly,
because it will be needed so many times, it can be computationally efficient to
calculate this distance matrix only once, and then simply provide the matrix to
each function that needs it.

This code creates a sp object, then a large matrix that is 185𝑋185, with each
cell representing the Euclidean distance between pairs of tract centroids.
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# Create a copy of data in the 'sp' format for use in some functions
atl.sp <- atl %>%
as('Spatial')

# Create distance matrix from centroids
atl.DM <- gw.dist(dp.locat = coordinates(atl.sp))

By default, the distance is calculated between every pair of obser-
vations. In the default case a kernel density function is centered
over every single observation. However, if you were analyzing a
much larger dataset (e.g. thousands of points), this would be com-
putationally inefficient and if points were close together might not
add much new information.
It is therefore possible to pre-define locations at which the ker-
nel function will be centered to adequately cover the region in
a more efficient manner. These points are often defined along a
grid (e.g. every 1000 meters, for example), and define a subset of
locations at which to fit the kernel.
There is an illustration of this approach in the final section of
this tutorial, and please note that this adaptation would be useful
in many settings. However, for the immediate purposes we will
accept the default behavior.

12.3.3 Defining local: optimizing kernel bandwidths

Remember how we considered alternative definitions of local using kernel den-
sity estimates by changing the bandwidth of the kernel function? Recall the
bandwidth is the radius of the search window, and the kernel is typically a
bell-shaped curve (e.g. Gaussian or bi-square or similar).

The GWModel package has many functions for using cross-validation (or AIC) to
find an optimal (defined as best fitting) bandwidth for a given dataset. Unfor-
tunately the best fit completely depends on the statistic being estimated. For
that reason we may need to find a different bandwidth for each statistical test.

Just as with previous applications of kernel density functions, we can choose
from a fixed or an adaptive bandwidth. Fixed bandwidth refers to a single kernel
density radius to use in all parts of the study region. In contrast, adaptive band-
width is a strategy to allow the radius to be adjusted to maintain a consistent
amount of information, irrespective of changes in the population or area.

In the case of GWModel, fixed bandwidths are defined in terms of the linear
units of the map (e.g. meters in this case). In contrast adaptive bandwidths are
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defined by the number of units; therefore the kernel grows or shrinks in order
to maintain a constant number of units ‘under’ the kernel function.
In Disease Mapping 3, we used the function bw.gwss.average() to find an
optimal bandwidth that was specific to calculation of geographically weighted
summary statistics. However, the optimal bandwidth can be different for each
statistic of interest, and therefore the procedure for finding an optima for geo-
graphically weighted regression is different.
The function bw.gwr() uses cross-validation to find optimum bandwidth for a
geographically weighted regression rather than summary statistics.

h.fixed <- bw.gwr(MENTALHLTH ~ SMOKING + PHYSHLTH,
data = atl.sp,
dMat = atl.DM)

h.adapt <- bw.gwr(MENTALHLTH ~ SMOKING + PHYSHLTH,
data = atl.sp,
adaptive = T,
dMat = atl.DM)

h.fixed

## [1] 12082.4

h.adapt

## [1] 59

The optimal bandwidth for this specific regression model is either a fixed radius
of 12082 meters, or else an adaptive bandwidth that always maintains 59 census
tracts within the local region, regardless of their relative size (e.g. this is akin
to k-nearest neighbors).

12.3.4 Geographically weighted regression

GWModel offers a wide range of modeling tools including geographically weighted
linear regression, Poisson regression, binomial regression, and even local fitting
options including adjustment for local heteroscedasticity, and local ridge regres-
sion which is robust to collinearity.
Because our outcome, MENTALHLTH is continuous and relatively normally dis-
tributed, basic linear geographically weighted regression will work.
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The fitting of basic (meaning linear) GWR models is via the function
gwr.basic(). Just as there are many functions in GWModel that begin with
bw.x for estimating bandwidths, there are many functions that begins with
gwr.x for fitting a variety of models. Look at the help documentation.

m <- gwr.basic(MENTALHLTH ~ SMOKING + PHYSHLTH,
data = atl.sp,
bw = h.adapt,
adaptive = T,
dMat = atl.DM)

print(m)

## ***********************************************************************
## * Package GWmodel *
## ***********************************************************************
## Program starts at: 2023-10-11 14:44:42.149799
## Call:
## gwr.basic(formula = MENTALHLTH ~ SMOKING + PHYSHLTH, data = atl.sp,
## bw = h.adapt, adaptive = T, dMat = atl.DM)
##
## Dependent (y) variable: MENTALHLTH
## Independent variables: SMOKING PHYSHLTH
## Number of data points: 185
## ***********************************************************************
## * Results of Global Regression *
## ***********************************************************************
##
## Call:
## lm(formula = formula, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4988 -0.9689 -0.1638 0.6708 5.7530
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.13908 0.28497 11.015 < 2e-16 ***
## SMOKING 0.16286 0.02830 5.754 3.64e-08 ***
## PHYSHLTH 0.50325 0.04137 12.166 < 2e-16 ***
##
## ---Significance stars
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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## Residual standard error: 1.451 on 182 degrees of freedom
## Multiple R-squared: 0.8523
## Adjusted R-squared: 0.8507
## F-statistic: 525.1 on 2 and 182 DF, p-value: < 2.2e-16
## ***Extra Diagnostic information
## Residual sum of squares: 383.1576
## Sigma(hat): 1.446982
## AIC: 667.704
## AICc: 667.9262
## BIC: 516.4669
## ***********************************************************************
## * Results of Geographically Weighted Regression *
## ***********************************************************************
##
## *********************Model calibration information*********************
## Kernel function: bisquare
## Adaptive bandwidth: 59 (number of nearest neighbours)
## Regression points: the same locations as observations are used.
## Distance metric: A distance matrix is specified for this model calibration.
##
## ****************Summary of GWR coefficient estimates:******************
## Min. 1st Qu. Median 3rd Qu. Max.
## Intercept -1.4633747 -0.0771617 3.0706879 3.9759400 8.0903
## SMOKING -0.0074907 0.0599293 0.1369631 0.3200178 0.6134
## PHYSHLTH -0.1574946 0.1773786 0.5613934 0.9628009 1.1627
## ************************Diagnostic information*************************
## Number of data points: 185
## Effective number of parameters (2trace(S) - trace(S'S)): 27.10305
## Effective degrees of freedom (n-2trace(S) + trace(S'S)): 157.8969
## AICc (GWR book, Fotheringham, et al. 2002, p. 61, eq 2.33): 568.6092
## AIC (GWR book, Fotheringham, et al. 2002,GWR p. 96, eq. 4.22): 540.1906
## BIC (GWR book, Fotheringham, et al. 2002,GWR p. 61, eq. 2.34): 441.6136
## Residual sum of squares: 179.7807
## R-square value: 0.9307003
## Adjusted R-square value: 0.9187292
##
## ***********************************************************************
## Program stops at: 2023-10-11 14:44:42.15708

This procedure produces a lot of output! Examine the output above, and review
some of the key points of interest:

1. An initial test for the presence of significant non-stationarity is evidence
that the (much more complex) GWR fits better than the simpler global
model. Do this by checking whether the local (GWR) model fits better
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than the global (aspatial) model by comparing the AICc from the global
model at the top of the output to the AICc from the GWR at the bot-
tom. The AICc is a fit statistics that penalizes for additional parameters,
including the many parameters being estimated by repeating the model
many times. Therefore we only find evidence of non-stationarity when
the AICc for the GWR is smaller than then AICc for the global model
(typically a difference in AICc of 3 or greater is sufficient to say the local
model fits better). In this case the GWR fits much better than the global,
suggesting significant non-stationarity in the relationships in this model.

2. Next compare the magnitude of the regression coefficients in the global fit
(top) to the range of coefficients in the GWR (lower portion of output).
Which variables appear to vary the most? Using the interquartile compar-
ison (e.g. comparing Q1 to Q3 of the range of coefficients), the absolute
difference is greatest for PHYSHLTH, although SMOKING also has substantial
variation.

3. Look at the variance explained as summarized by the adjusted 𝑅2 value.
Both the global and the GWR models explain a great deal of variance,
but the GWR has a higher 𝑅2 of 0.93.

12.3.5 Checking local multi-collinearity

While collinearity is a possible concern in any regression model, its importance
in GWR is heightened by the fact that the model is re-fit in geographic subsets
of the data where variables would be anticipated to have higher correlation
than in the study region at large (e.g. like things tends to be near like things).
Multicollinearity can lead to variance inflation which may produce statistically
unreliable (imprecise) estimates.

We can first carry out collinearity diagnostics on the model results, and then if
we find evidence for concerning multicollinearity we could either alter the model
(remove culprit covariates) or consider fitting model forms robust to collinearity
including local ridge regression available via the function gwr.lcr().

For now we will begin with diagnostics. The function gwr.collin.diagno()
returns the Condition Number and Variance Inflation Factor (VIF) from the
model fit above.

collin <- gwr.collin.diagno(MENTALHLTH ~ SMOKING + PHYSHLTH,
data = atl.sp,
adaptive = T,
dMat = atl.DM,
bw = h.adapt)

There is neither a print() nor a summary() function for the output of this
function. However to see the output summarized as a spatial object we can look
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at the names of collin$SDF:

names(collin$SDF)

## [1] "SMOKING_VIF" "PHYSHLTH_VIF"
## [3] "local_CN" "Intercept_VDP"
## [5] "SMOKING_VDP" "PHYSHLTH_VDP"
## [7] "Corr_Intercept.SMOKING" "Corr_Intercept.PHYSHLTH"
## [9] "Corr_SMOKING.PHYSHLTH"

You will see that there is an overall Condition Number (local_CN), as well
as Variance Inflation Factors (VIF) and Variance Decomposition Proportions
(VDP) for each variable. In evaluating for concerning collinearity, we can
map these values to understand whether (and if so, where) there is evidence
of collinearity.

For instance we might start looking at the local Condition Number; a rule of
thumb suggests that a value over 30 is evidence of important multicollinearity.

tm_shape(collin$SDF) +
tm_fill('local_CN',

style = 'fixed',
breaks = c(0,15,25,30,35),
palette = '-PRGn')+

tm_borders(alpha = 0.2)
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local_CN
0 to 15
15 to 25
25 to 30
30 to 35

It looks like only a portion of southwest Atlanta have concerning CN’s. Now we
can look at the VIF for variables to see which are culprits (and where).

tm_shape(collin$SDF) +
tm_fill(c('SMOKING_VIF', 'PHYSHLTH_VIF'),

style = 'fixed',
breaks = c(0,1, 2, 3, 4),
palette = '-PRGn') +

tm_borders(alpha = 0.2)
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SMOKING_VIF
0 to 1
1 to 2
2 to 3
3 to 4

PHYSHLTH_VIF
0 to 1
1 to 2
2 to 3
3 to 4

From this we can see that no places have VIF for any variable above 4; this
reduces our concern about meaningful local variance inflation from this model.
We could continue to explore diagnostics, but for now this is satisfactory finding.

12.3.6 Adjusting for multiple comparisons

First, let’s look more closely at the output of our call to gwr.basic() above.
Specifically, let’s look at the names of the m$SDF portion of the output.

names(m$SDF)

## [1] "Intercept" "SMOKING" "PHYSHLTH" "y"
## [5] "yhat" "residual" "CV_Score" "Stud_residual"
## [9] "Intercept_SE" "SMOKING_SE" "PHYSHLTH_SE" "Intercept_TV"
## [13] "SMOKING_TV" "PHYSHLTH_TV" "Local_R2"

Not surprisingly, we see there are values for the estimate of the local intercept,
and the regression coefficients for each predictor. But in addition there is a
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standard error for each coefficient, as well as a t-value test statistic which relates
to its significance. This is simply the local version of all the information from
the global regression output above, but it provides the information necessary
to determine whether each covariate is statistically significantly associated with
the outcome, should that be of interest.

However, the presence of these local test statistics of significance highlight an-
other critique of GWR, which is the repetition of tests across the study region.
While repeating tests centered on each county in turn do not reflect fully inde-
pendent tests (there is a lot of the same information in each new window of the
kernel), there is clearly some concern about making inference (for example via
tests of statistical significance) when multiple testing has occurred.

However we can adjust the test statistic to account for multiple comparison
using the function gwr.t.adjust(). This function takes a gwrm.Obj object
which is the output of the gwr.basic() function as its input, and returns a set
of p-values adjusted for multiple comparisons in different ways.

t.adj <- gwr.t.adjust(m)

The function calculates adjusted p-values under four alternative schemes. One
is the familiar Bonferroni adjustment, which is almost surely too conservative,
because it assumes that every test location was a completely independent sam-
ple (which by definition of GWR is false). The other approaches are various
versions of False Discovery Rate algorithms which try to assess the degree of de-
pendence between tests to determine how the effective number of tests conducted
(e.g. the equivalent of the number of unique, independent tests after accounting
for overlapping information). Any could work, but at least one review suggest
the Benjamini-Yekutieli method is a good middle ground.

If you look at the results returned by the function above you will see that
adjusted p-values are provided for each method with the Benjamini-Yekutieli
indicated by the *_by* suffix.

names(t.adj$SDF)

## [1] "Intercept_t" "SMOKING_t" "PHYSHLTH_t" "Intercept_p"
## [5] "SMOKING_p" "PHYSHLTH_p" "Intercept_p_by" "SMOKING_p_by"
## [9] "PHYSHLTH_p_by" "Intercept_p_fb" "SMOKING_p_fb" "PHYSHLTH_p_fb"
## [13] "Intercept_p_bo" "SMOKING_p_bo" "PHYSHLTH_p_bo" "Intercept_p_bh"
## [17] "SMOKING_p_bh" "PHYSHLTH_p_bh"
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12.3.7 Visualizing model inference

Finally, we are ready to visualize the results of our GWRmodel. There are many
ways to visualize the significance of each parameter. Here is one approach. In
the code chunk below I do the following things:

1. Convert from sp to sf so that I can take advantage of the data manipu-
lation for sf objects using dplyr() verbs and pipes.

2. Recode the adjusted p-value for each coefficient (e.g. Intercept, SMOKING,
and PHYSHLTH) to indicate counties where the respective coefficient p-value
is <0.05, naming the resulting variable pval

3. Group counties by whether their covariate coefficient is or is not statisti-
cally significant by grouping on variable pval

4. Use the summarise() function to aggregate the 185 census tracts into
either significant or not.

5. Finally, use filter() to exclude the non-significant regions. Note we are
not removing the actual coefficients used for the choropleth map! Instead
we are just selecting for the outlines of census tracts that are statistically
significant adjusting for multiple comparisons.

# Create a spatial object delineating statistically significant INTERCEPT coefficients
intercept.p <- t.adj$SDF %>%
st_as_sf() %>%
mutate(pval = ifelse(SMOKING_p_by <0.05, 1, 0)) %>%
group_by(pval) %>%
summarise(count = n()) %>%
filter(pval ==1)

# Create a spatial object delineating statistically significant SMOKING coefficients
smoke.p <- t.adj$SDF %>%
st_as_sf() %>%
mutate(pval = ifelse(Intercept_p_by <0.05, 1, 0)) %>%
group_by(pval) %>%
summarise(count = n()) %>%
filter(pval ==1)

# Create a spatial object delineating statistically significant PHYHLTH coefficients
physhlth.p <- t.adj$SDF %>%
st_as_sf() %>%
mutate(pval = ifelse(PHYSHLTH_p_by <0.05, 1, 0)) %>%
group_by(pval) %>%
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summarise(count = n()) %>%
filter(pval ==1)

With this complete, we can now map the geographically weighted regression co-
efficient (along with adjusted test of significance) for the association of SMOKING,
conditional on other variables, with MENTALHLTH. The tmap code below should
be relatively familiar at this point, with the exception of a couple additions:

• I use the function tm_add_legend() to manually specify that I want the
legend to include red lines labeled as ‘p-value < 0.05’.

• In R there are different ways to get Greek letters and other symbols in
plots. In tmap the only one I have found to work is the use of Unicode
values. These are unique codes for every possible symbol. If you Google
‘unicode Greek letters’ you will find lists. In the smoke.coefficients
map below I specify the title of the legend to be \u03B2 which is the value
specific to a Greek 𝛽.

# Map of observed prevalence of smoking
smoke.prev <- tm_shape(atl) +
tm_fill('SMOKING',

style = 'quantile',
palette = 'BuPu',
title = '%') +

tm_borders() +
tm_layout(title = 'Prevalence of smoking',

legend.format = list(digits = 1))

# Map for spatially varying SMOKING coefficients
smoke.coefficients <- tm_shape(m$SDF) +
tm_fill('SMOKING',

style = 'quantile',
title = '\u03B2') +

tm_borders(alpha = 0.2) +
tm_shape(smoke.p) +
tm_borders(col = 'red',

lwd = 1) +
tm_layout(title = 'Coefficients for SMOKING',

legend.format = list(digits = 2)) +
tm_add_legend(type = 'line',

labels = 'p-value < 0.05',
col = 'red')

tmap_arrange(smoke.prev, smoke.coefficients)
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Prevalence of smoking

%
7.2 to 10.4
10.4 to 13.1
13.1 to 18.1
18.1 to 24.4
24.4 to 38.7

Coefficients for SMOKING

?
−0.01 to 0.06
0.06 to 0.11
0.11 to 0.19
0.19 to 0.37
0.37 to 0.61

p−value < 0.05

This map demonstrates several things about the relationship between local
prevalence of smoking and prevalence of poor mental health (the outcome) at
the census tract level.

1. First, as a reminder, we have the map of the observed prevalence (a pre-
dictor of poor mental health) in the left hand map. Smoking prevalence
is higher in South Atlanta.

2. It is evident that the strength of the relationship between smoking and
poor mental health is not stationary, but instead quite non-stationary or
location-dependent. We see this evidenced by the fact that the coefficient
ranges in the right-hand panel from essentially zero (e.g. in the north) to
0.6 in the southwest.

3. Finally, while the global model suggested smoking was a statistically sig-
nificant predictor of poor mental health, it appears from the right-hand
map that this is only true in part of the study area. In other words,
smoking is not significantly associated with poor mental health in regions
outside of the zone delineated by the red line.

We can examine all three coefficients together like this:
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# Map for spatially varying intercepts
int.coefficients <- tm_shape(m$SDF) +
tm_fill('Intercept',

style = 'quantile',
title = '\u03B2',
palette = 'OrRd') +

tm_borders(alpha = 0.2) +
tm_shape(intercept.p) +
tm_borders(col = 'red',

lwd = 1) +
tm_layout(title = 'Intercepts',

legend.format = list(digits = 2)) +
tm_add_legend(type = 'line',

labels = 'p-value < 0.05',
col = 'red')

# Map for spatially varying PHYSHLTH coefficients
physhlth.coefficients <- tm_shape(m$SDF) +
tm_fill('PHYSHLTH',

style = 'quantile',
title = '\u03B2',
palette = 'YlGnBu') +

tm_borders(alpha = 0.2) +
tm_shape(physhlth.p) +
tm_borders(col = 'red',

lwd = 1) +
tm_layout(title = 'Coefficients for PHYSHLTH',

legend.format = list(digits = 2)) +
tm_add_legend(type = 'line',

labels = 'p-value < 0.05',
col = 'red')

tmap_arrange(int.coefficients, smoke.coefficients, physhlth.coefficients)
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Intercepts

?
−1.46 to −0.85
−0.85 to 2.26
2.26 to 3.63
3.63 to 4.07
4.07 to 8.09

p−value < 0.05

Coefficients for SMOKING

?
−0.01 to 0.06
0.06 to 0.11
0.11 to 0.19
0.19 to 0.37
0.37 to 0.61

p−value < 0.05

Coefficients for PHYSHLTH

?
−0.16 to 0.11
0.11 to 0.48
0.48 to 0.69
0.69 to 1.10
1.10 to 1.16

p−value < 0.05

12.3.8 Extensions

Unlike some other tools we’ve learned in this class, GWR is quite widely adapt-
able to a variety of situations. For example it is possible to conduct GWR
analysis on points or polygons, and while we demonstrated linear regression, we
could also use Poisson or Binomial regression.
As an example, if you had individual level outcome data and associated ex-
posures (individual or contextual) linked to street-level geocodes (e.g. points)
you could carry out spatial logistic regression, estimating the spatially-varying
association between predictors and outcome.
Alternatively if you had aggregated count data as might be common with the
surveillance-type data we relied on in Disease Mapping, you could use Poisson
to estimate rates rather than rely on linear regression.

12.3.9 Data models

One final option that could be useful is using gridded points to pre-specify the
evaluation location for each kernel density estimation. Recall that by default, all
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of the preceding procedures place the kernel estimator over every single feature
(each census tract polygon centroid in our case). However it could be more
efficient to describe a regular grid of points that covers the whole region. This
could be computationally efficient if for example the number of grid points was
smaller than the number of features (observations). Note that the pre-specified
evaluation points don’t change the data; instead they change where the kernel
window is centered for estimation.

This strategy described below could be generalized to any time
you wanted to return a raster surface from kernel density smooth-
ing (e.g. using gwss() or gwr.xx() models) of points or polygons.
In otherwords using gridded evaluation points converts the answer
from polygon/point to raster surface.

Here is an approach that follows these steps:

1. Extract the bounding box or spatial extent of the original data. This is the
min and max 𝑥, 𝑦 coordinate locations of the obesity spatial object.

2. Define a spatial resolution of the grid points. Below I have specified 1000
meters or 1 km. This is how far between each evaluation point.

3. Define the dimensions of the grid that would cover the spatial extent of
the data using the specified resolution. This is how many rows or columns
are needed (at the specified resolution) to cover the target area.

4. Finally, create a SpatialGrid object in sp with the target dimensions.

bb <- bbox(atl.sp)
res <- 1000
c.dim <- c(ceiling((bb[1,2] - bb[1,1]) / res),

ceiling((bb[2,2] - bb[2,1]) / res))

grd <- SpatialGrid(GridTopology(cellcentre.offset = bb[,1],
cellsize = c(res,res),
cells.dim = c.dim))

When we plot the grid over the original data you can visualize how the evaluation
points (the grid points) represent the region. Each grid is a single location where
the GWR model will be centered. In this case we clearly have more evaluation
points than the number of census tracts. In that way this strategy is not actually
saving computational time, but instead is simply a step towards producing a
raster surface of GWR results.
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plot(grd, col = 'red')
plot(atl.sp, add = T, col = adjustcolor('navyblue',alpha.f=0.3))

Next, we recalculate the distance matrix. Recall that originally it was describing
the distance between each pair of county centroids (to inform the weights derived
from kernel density functions). Now, we combine information about where each
census tract is (for weighting, described as data point, or dp.locat), with where
each evaluation point is (for locating the kernel itself, described as regression
points, or rp.locat).

atl.DM2 <- gw.dist(dp.locat=coordinates(atl.sp),
rp.locat=coordinates(grd))

Finally, we can refit the original model, now using the SpatialGrid as a defi-
nition of the model calibration points, rather than assuming the default which
is that each region in the SpatialPolygons represents a calibration or model-
fitting location.
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# Refit model at specified gridded points
m2 <- gwr.basic(MENTALHLTH ~ SMOKING + PHYSHLTH,

data = atl.sp,
dMat = atl.DM2,
regression.points = grd,
bw = h.adapt,
adaptive = T)

To make visualizing easier we can convert the output of this model (which is
a SpatialPixelDataFrame) to a raster object. Typically a raster object in
R only has a single attribute (e.g. one statistic or variable with pixel values
representing the local value of that statistic).

However, in this case we want to convert the pixel values for both of the coef-
ficients plus the intercept. To do that we create what is called a raster brick,
which is just a stack of rasters. Because the grid has coverage well outside the
bounds of the study region, we can also mask (e.g. trim or crop) the raster to
only show results for areas we have data.

# Create brick and crop it to the county data
m2.raster <- brick(m2$SDF) %>%
mask(atl)

To visualize the results:

raster.int <- tm_shape(m2.raster$Intercept) +
tm_raster('Intercept',

style = 'cont',
palette = 'OrRd')

raster.smoke <- tm_shape(m2.raster$SMOKING) +
tm_raster('SMOKING',

style = 'cont',
palette = 'BuPu')

raster.phyhlth <- tm_shape(m2.raster$PHYSHLTH) +
tm_raster('PHYSHLTH',

style = 'cont',
palette = 'YlGnBu')

tmap_arrange(raster.int, raster.smoke, raster.phyhlth)
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Intercept
0
2
4
6
8

SMOKING
0.0
0.1
0.2
0.3
0.4
0.5
0.6

PHYSHLTH
0.0
0.2
0.4
0.6
0.8
1.0

What this demonstrates is that a pre-defined spatial grid can recover the same
patterns, and in instances where the number of observations is extremely large,
the spatial grid could be a more efficient approach. Unfortunately (for reasons
I do not understand), standard errors and t-values do not seem to be returned
for this spatial grid, so significance testing is not available (as far as I can tell
at the time of this writing).
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Table 12.2: Vocabulary for Week 12

Term Definition

1st order process

Statistical measures where units
taken one at a time. Spatial
heterogeneity is about how the
mean intensity varies for each
unit, and is therefore primarily
about first order process

2nd order process

Statistical measures where units
considered at least two at a time.
Spatial dependence is about
correlation or relatedness
between units and is therefore
about 2nd order processes

Data generating process

The true underlying causal
structure that gives rise to
(generates) the data from which
you sampled. The data
generating process is not
typically known. We use models
to try to emulate or approximate
the data generating process.

Geographically weighted
regression

A multivariable regression that is
re-fit for multiple sub-regions
within a study area, typically
weighting the observations using
a kernel density function. The
goal of GWR is to identify
statistical evidence for
non-stationarity (e.g. does a
locally varying regression fit the
data better than a single global
model, after penalizing for
multiple comparisons?) and if
present to quantify their values
and spatial patterns.

Stationarity vs
non-stationarity

Stationary’ statistics are those
for which the global value is true
for all sub-groups (e.g.
sub-population or places). In
contrast, non-stationarity is when
the value of a given statistic is
not singularly global, but in fact
depends on the sub-group (e.g.
populatio or location). Spatia
non-stationarity can refer to
disease intensity (e.g. spatial
heterogeneity) or to variable
relationships (e.g. spatially
varying coefficients).
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Chapter 13

Reproducibility and
Projects in R

Additional Resources

• R Markdown Cheatsheet
• Comprehensive guide to using R Markdown

– Chapter within the R Markdown guide specific to Notebooks

• Epidemiologist R Handbook - Working with projects
• Epidemiologist R Handbook - R markdown
• Working with Projects in R
• R for Data Science - Workflow Projects

13.1 The benefits of code reproducibility

Reproducibility refers to the capacity for any process you create to be fully and
independently replicable either by yourself in the future or by another person.
Non-reproducibility of scientific findings has been cited as a leading problem and
some of the problem comes from the ad-hoc and thus non-reproducible conduct
of data preparation and analysis.

Spatial epidemiology requires intensive data preparation, cleaning, and manage-
ment, and often complex sequence of analytic steps. In other words it would be
difficult for another analyst or a future version of yourself to repeat the process
in exactly the same way unless there is a perfect record of what was done. For
this reason, reproducibility of analysis is emphasized and required in this course.

363

https://github.com/rstudio/cheatsheets/raw/master/rmarkdown.pdf
https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/notebook.html
https://epirhandbook.com/en/r-projects.html
https://epirhandbook.com/reports-with-r-markdown.html#r-markdown-components
https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
https://r4ds.had.co.nz/workflow-projects.html
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For an analysis to be reproducible you be sure that all data stays paired with
all code, and that all (or as many as possible) steps that change or manipulate
data are written in your scripts rather than done ‘by hand’ (e.g. in Excel or
some other editor).

13.2 Workflows to enhance reproducibility

Because R and RStudio are often used for data preparation, analysis, and report-
ing, the fundamental importance of reproducibility (making analytic processes
transparent, interpretable and repeatable) is built-in through many features.
This Appendix introduces several strategies that are important for reproducibil-
ity broadly, and also important for the work you do in this course.

First, there is a brief introduction to projects in RStudio, and then there is a
slightly more in-depth description of a specific file format, rmarkdown and how
it can be used to create Notebooks.

13.2.1 Using Projects in R

A project in R organizes your work much as you might use folders on your
computer to sort and separate into some logical scheme. In other words, it is a
place where you put multiple documents or files that are related to one another.

For instance, you might choose to have a single project for each week of this class,
and perhaps a separate project for each assignment. In each project directory
(folder) you could store the data, the scripts or code, and any outputs (e.g. saved
maps or other saved objects) that are specific to that week or assignment.

The advantage of creating a formal project in RStudio (rather than just a regular
folder, for example), is that RStudio projects have certain benefits for your
coding workflow.

• When you open a project, the working directory (e.g. the root directory or
file path where R looks for files when you import) is automatically set to
be inside the project folder. This means that if you keep your data inside
the project, you will never have to worry about broken links or incorrect
file paths that occur because data was moved.

• Projects remember environmental settings in RStudio, so you may cus-
tomize something to a specific project and that will be remembered each
time you open the project.

• If you ever work with a version control system such as Github, projects
are the natural strategy to contain a repository
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You should avoid using setwd() in R! That function changes
the working directory and you may have been taught to do this to
make it easier. This is bad because whatever pathname you put
inside the setwd() will amost never work on another computer.
That means your code is fragile and specific to your computer,
and probably to your computer at only a specific point in time.
If you find yourself relying on setwd() or any other strategy to
hard code file pathnames, please consider learning about projects.
They help make code less fragile and more robust for sharing and
reproducing.

To create a new project:

1.Look in the upper-right corner of RStudio for the blue-ish R symbol that will
likely say ‘Project’. Click the pull-down menu and select New Project 2. You will
see the Project Wizard open with three options: + If you have not yet created
the folder on your computer that will be your project, choose New Directory +
If you already have a folder (e.g. perhaps it is named ‘Week1’), choose Existing
Directory + If you are are forking or checking out a repository from Github,
GitLab or other system, choose Version Control 3. Navigate to the location
you want your new folder to be, or else the location where you existing folder
already is 4. Name the project and click Create Project

Once the project is created, you can navigate via your finder to that folder. You
will notice a new file with extension .Rproj. If you double-click this file, your
project will open, including whatever files and settings you have already worked
on.

Get in the habit of opening R by double-clicking on the xxx.Rproj
icon in your project folder. Doing this makes sure that the work-
ing directory is set and helps you maintain relative rather than
absolute file pathnames within your project folder.

13.3 Organizing projects

Some projects or analyses are simple and perhaps only involve a single script
document and use built-in data. But most projects are more complex than
that, involving dataset(s), one or more files with code scripts, possibly output
including datasets as well as images saved from figures, and markdown files or
reports. It is good practice to have a standard strategy for organizing these.
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13.3.1 Make scripts that do discrete tasks

You may be used to having one file with hundreds or even thousands of lines
of code to do every part of an analysis. This isn’t inherently wrong, but it can
make it difficult to find the particular snippets of code where you defined a re-
coded variable, or carried out descriptive analyses. For larger projects, consider
creating separate scripts for discrete steps. If you do have many different R
scripts in a given project, consider storing them in a sub-folder perhaps labeled
code/. You might break your work down into separate scripts like this:

1. A script for data preparation. This allows you to quickly return to the
process of retrieving and preparing your data to make changes.

2. Scripts for descriptive analysis. You may want to revisit your descriptives
in the future and having them separate makes that easier.

3. Scripts (one or more) for more complex analyses including modeling, figure
preparation, or simulation.

Each script should have an informative name such as project-x-data-prep.R
or project-x-create-final-maps.R.

13.3.2 Always store data with code and output

If you are creating maps, the raw (and possibly post-processed, or intermediate)
data that supports those maps should be stored inside your project folder.
This is the only way to guarantee that you can return in a year and recreate the
map exactly. If you have multiple data files, you might consider putting this
content in a sub-folder, possibly labeled data/.

13.3.3 Maintain all output files (figures, cleaned datasets,
etc)

Just as you want to store code and data together, you should also plan to store
all output content in the main project folder or possibly in one or more sub-
folders (e.g. images/ or reports/). There are several kinds of outputs that
might be generated including:

• Images or figures
• Maps
• Cleaned or prepared datasets (either stored as .xlsx or .csv or possibly

stored in R binary format such as .rds)
• Reports (e.g. rendered from R-markdown either as html or pdf)
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13.4 Use the here package to maintain robust
relative pathnames

There are many reasons to keep your work organized, but one is to maintain a
known and constant relationship between where data and code are stored. As
discussed above, the use of setwd() creates a rigid or absolute pointer to where
a file (e.g. your data might be at C:\MyDocuments\EPI563\Week1) are stored.
But if you changed computers or changed your file structure on your current
computer, that absolute path would likely fail making the code non-reproducible
(your code could not find you data)!

Instead, please try to preference relative pathnames. That is a way of describing
where something is relative to a given starting point. In the case of projects in R-
studio, that starting point is always the folder containing the project. Thus, the
location of a dataset stored in a sub-folder called data is: data/mydataset.xlsx;
it is assumed that the folder data is a sub-folder of the parent or project folder.
As long as you keep your project as a self-contained folder (e.g. copy/paste it
as a folder or share it as a folder with all contents), this relative location will be
robust.

The here package was developed to try to make some of this a bit easier. The
package named here also has a function named here() (I know it feels a bit
repetitive!). The function, here() serves to describe the hierarchical nesting of
folders that locates the file or location you desire (e.g. where to import a dataset
from or where to save a figure to). This is some examples of how to use here():

• Importing data: mydata <- read.csv(here('data', 'wave1',
'wave1_data.csv)). In this code, we create a new object (named
mydata) that results from using the function read.csv(). The data
is located within the project folder at this relative path location:
data/wave1/wave1_data.csv.

• Saving output: ggsave(here('figures', 'figure1.png')). In this
code, we save the ggplot() figure to our computer at this location within
the overall project folder: figures/figure1.png.

Caution: If you work in a Windows OS environment, be careful
how you designate file pathnames. R uses notation that is sim-
ilar to Unix OS, and also the one adopted by Mac OS, which
is to define a set of nested folders with a forward slash as in:
H:/mkram02/gis-file . Unfortunately that is the opposite of
how Windows describes pathnames (e.g. in Windows the above
would use back slash like this: H:\mkram02\gis-file). Using the
here packages avoids this confusion.
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13.4.1 Specify a relative location outside the working di-
rectory

What if you have one folder for this entire course, and inside it you have a
separate project directory for each week. If you are working on the project
for Week2, you might wish to load a file that you saved previously in Week1. In
other words it is not a sub-folder, but is actually outside of the current directory.
You could use the setwd() function to change the location, but that creates a
possibly fragile absolute pathname and can be dangerous. Instead you could
create a more robust relative pathname by referring to the other file in relation
to your current location.

Using two dots in a pathname tells R to go up a level in the directory. So to if
the georgia.csv file I referred to above were in your Week1 directory, but your
are currently woring in Week2 you could do this:

dd <- read.csv('../data/death-data/georgia.csv')

This means “go up a level, then look in the data folder, then the death-data
folder, then load the georgia.csv file”. If you need to go up two (or more) levels,
simply repeat: ../../data/death-data.georgia.csv
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Introduction to rmarkdown

14.1 What is markdown and why do we need it?

The markdown language is an approach to easily creating formatted text to use
in .html or other formats (.e.g PDF, Word) with a simple text-editor. Within
R, the rmarkdown package allows the implementation of the general markdown
language.

For most assignments in this course, at least a portion of the deliverable will
be a fully-functional, annotated R Markdown document. The benefit of the
formats is that it lets the analyst create a very human-readable report that
easily combines R code, the output or results from that code (e.g. including
tabular results as well as figures like maps), interspersed with text formatted
like you might in a word processing document. For example this eBook, and
many other resources in this course are created using rmarkdown or related
packages such as bookdown.

R Notebooks are a specific instance or case of markdown that is incorporated
into R Studio and has some nice features for the applied data analyst.

• rmarkdown allows you to type text that explains what you are doing,
what decisions you are making, interpret findings, or note areas in need
of further exploration. This is similar to the usual commenting you might
be familiar with, but makes it easy to be more narrative or expansive in
comments.

• rmarkdown contain functional R code interspersed with the narrative com-
ments, so that code, comments and output or results can all be seen in
one continuous document.

• In R-Studio, rmarkdown can result in interactive results (e.g. output shows
up below each chunk), and you can even see how the rendered version will
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look by choosing Visual (instead of Source) at the top of the editor pane.
This means that as you are coding and working you can see the results in
the document. When you save the document the text, the code and the
results are saved!

So the reason for using rmarkdown is that it provides a means for clear annota-
tion and documentation combined with ready reproducibility. Reproducibility
means that someone else (or a future you!) could come back and get the same
result again.
To benefit from the advantages above, I recommend you gain familiarity with
the basic (and perhaps the optional) formatting described below. I also rec-
ommend you develop a knack for rich annotation and documentation, not just
brief (often cryptic) comments that we are all used to writing in SAS and other
code! Document what you plan to do. Document what you did. Document
what the results means. Document what else needs to be done.

R Markdown are very handy and serve like ‘lab notebooks’ docu-
menting your thinking as you go. They are great for reports you
want to share with others (or your future self). But it is still ok
to use regular R-scripts for analyses that do not require extensive
documentation. For example writing functions or data-cleaning
scripts may be more appropriate in simple scripts that have the
extension my_code.R rather than my_code.Rmd (e.g. the notebook
markdown).

rmarkdown vs. quarto
Recently the company that develops and supports R Studio de-
veloped a new alternative to the markdown language in R: Quarto.
You can read more about quarto here, or see a comparison of
rmarkdown and quarto here.
You may have learned to use quarto in another class. You are
not required to use rmarkdown in this class. Instead, you
are simply expected to produce lab and homework deliverables
as human-readable documents produced by either markdown or
quarto.

14.2 Important R Markdown functions

14.2.1 The YAML

---

https://quarto.org/docs/computations/r.html
https://quarto.org/docs/faq/rmarkdown.html
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title: "Title of your notebook"
author: "Your Name Here"
date: "Submission date here"
output:

html_document:
number_sections: yes
toc: yes
toc_float: yes

---

When you create a new R Markdown file from within R Studio (e.g. via File >
New File > R Markdown), a ‘YAML’ will automatically be created at the top
of the script delineated by three dash lines ---. YAML stands for “yet another
markup language” and it is a set of instructions about how the finished document
will look and be structured. You can accept the default YAML structure (of
course modifying the title) or copy/paste the YAML from the top of this script.
You can also read more online about additional customizations to the YAML,
but none are necessary for this course.

However, the YAML can be tricky sometimes. Here are a few general tips:

• Keywords (e.g. title, date or output) end with a colon and what comes
after is the ‘argument’ or ‘setting’ for that keyword.

• When the ‘argument’ or ‘setting’ for a keyword takes up multiple lines,
you can hit , as is the case above with output:.

– However, note that sub-arguments (e.g. html_document:) to a par-
ent must be indented by 2 spaces.

– Further sub-arguments (e.g. number_sections: yes which is a spe-
cific setting for html_document:) must be indented an additional 2
spaces. The indentations represent organization to connect multiple
settings to the correct parent keyword.
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Modify YAML for working with quarto
Quarto was perhaps designed to render files that would stay to-
gether as a set. For example, the documents of the eBook are
rendered and disseminated as a group rather than as individuals
files. However, for work in this class you will be asked to submit
.html versions of your work as a stand-alone file. Unfortunately,
the default behavior of Quarto is not friendly for “stand alone”
dissemination (e.g. emailing or uploading an html to Canvas). If
you do so, the formatting and images may be altered or lost.
The solution?
All you need to do is tell R-studio and Quarto that you want a
stand-alone version. If you do so, when it renders, all of the neces-
sary style, image and other information will all be self-contained
in a the single .html file and thus be very portable. You do so by
adding details in the YAML like this:

---
title: "Untitled"
format:
html:
embed-resources: true

editor: visual
---

14.3 Typing text

The utility of rmarkdown is the ability to more completely document your think-
ing and your process as you carry out analyses. It is not necessary to be wordy
just for the sake of taking up space, but this is an opportunity to clearly delin-
eate goals, steps, data sources, interpretations, etc.

You can just start typing text in the script to serve this purpose. Some text
formatting functions are summarized later in this document, and in Cheat sheets
and online resources linked to elsewhere.

14.4 Adding R Code

rmarkdow let you write R code within your Markdown file, and then run that
code, seeing the results appear right under the code (rather than only in the
Console, where they usually appear).

There are 2 ways to add a new chunk of R code:

https://github.com/rstudio/cheatsheets/raw/master/rmarkdown.pdf
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1. Click the green C-Insert button at the top of the editor panel in R
Studio. The top option is for R code.

2. Use a keyboard short cut:

• Mac Command + Shift + I
• Windows Ctrl + Alt + I

Notice these R code chunks are delineated by three back-ticks (sort of like apos-
trophes)…these back-ticks are typically on the same key as the tilde (~) on the
upper left of most keyboards. The space between the sets of 3 back-ticks is
where the R code goes and this is called a code chunk.

You will see the syntax color change for things you type inside
an R chunk (e.g. delineated by ```), versus outside. Everything
inside follows the syntax rules of R. Everything outside will be
printed in the final report, but will not be run as R code.

When you want to run the code inside the code chunks, you can either:

1. Place your cursor on a line and click Ctrl+enter (Windows) or
CMD+Return (Mac), or you can click the Run button at the top of the
editor pane in R Studio.

2. To run all of the code within a chunk click the green Run Current Chunk
button at the upper-right of the code chunk.

Below is some code and the corresponding results.

head(mtcars)

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

plot(cars)
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In this way you can iterate through your analytic process…switching between
running code, viewing output, documenting in free text.

14.5 Workflow

Here is what I recommend for workflow:

1. Click File>New File>R Markdown to create a new file. Edit the YAML
(the stuff at the top) to have the correct title, author, etc. The template
that is created has some example code. Delete this generic code that
is under the YAML. Save the file to your project folder.

2. Use the space under the YAML to type the objective or purpose of this
analysis, and any introduction or background that is useful.

3. Carry out your analysis, inserting code chunks, running them, and docu-
menting them with free text as you go.

• If you wish, you can see how the results look in HTML by clicking the
Visual button at the top of the .
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4. Sometimes we go back and re-run code in a different order, or else delete
some code without re-running the entire script. This means the code is
not reproducible because some objects you created no longer have code
to support them. As a final check of reproducibility (the assurance that
your code is self-contained and not dependent on steps you did outside the
script) I recommend you always end by clicking the RUN button at the
top of the panel. Specifically, choose Restart R and Run all Chunks.
After it runs be sure to look at the results! This step erases all data objects
in memory and starts running your script from the top. If there is an error
when you do this, then something is missing in your code. Try to figure
it out and make changes so that you have code in your script that does
everything you expect.
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Chapter 15

Formatting Markdown and
Notebooks

15.1 Optional functions

The list of formatting functions is long. I include only a couple I find useful
(but not mandatory) here:

15.2 Customizing your YAML

While the default YAML is perfectly fine, the YAML at the top of this script
includes a few added functions including:

1. Specify a table of contents - this only works if you use headers
2. Specify section numbering
3. Specify that the table of contents should be ‘floating’ which means that

in html it is visible even when you scroll. For PDF rendering, ‘float’ is not
an option.

15.3 Simple formatting of your Notebook

It is generally helpful to organize a document by using headers to separate tasks
or steps in your code. You can easily create headers using the hashtag/pound
sign #. Specifically…
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• # at the beginning of the line denotes a top-level (level-1) header that will
be large and bold.

• ## at the beginning of the line denotes level-2 header
• ### unsurprisingly is a level-3 header!
• Make sure there is a space between the # and the text
• Always leave a blank line (return/enter) between the header text and the

‘regular’ text.

You can also make numbered or bulleted lists if that is helpful. A line that begins
with either an asterisk (*) or a number will begin a bulleted or numbered list.

Headers are populated into the table of contents, if specified.

15.4 Text formatting

The R Markdown Cheatsheets have lots of examples of formatting. Three things
that I use more frequently are bold, italics, and numbered or bulleted lists.

Key stroke Result
*italics* italics
**bold** bold

1. Numbered lists start with number, and each line must end with 2 space
(or have blank line between).

2. Instead of numbers you can use letters

• Bulleted lists can be initiated with an asterisk or +, and also must have
2 spaces (or blank carriage return) at end of each item.

15.5 Making tables

While not required, you may want to summarize data in a table in R Markdown.
There are packages devoted to creating tables, but you can create a quick-and-
dirty table just using keyboard symbols.

1. First start by making a header row. Separate each column name with a
‘pipe’ symbol, |

2. Put a continuous line of dashes (-----) under each column name, sepa-
rating columns with pipe symbol (|)

3. Now type text corresponding to each row and column. Separate columns
with pipe (|) and separate rows by carriage return/Enter

https://github.com/rstudio/cheatsheets/raw/master/rmarkdown.pdf
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So the following text typed directly into the Markdown file (e.g. not inside a
code chunk):

Column 1 | Column 2 | Column 3
----------|----------|-----------
Text 1 | Text 2 | Text 3
Next line | Next line 2 | Next line 3

Will produce the following output:

Column 1 Column 2 Column 3
Text 1 Text 2 Text 3
Next line Next line 2 Next line 3

There are some limited but useful additional customizations to the table. For
instance you can alter the width of a column by changing the relative number
dashes between pipes. You can also specify whether the contents of columns are
left or right justified, or whether they are centered by using colons (:) inside
the line with the dashes.

Column 1 | Left justified | Centered | Right justified |
---------|:-------------|:---------:|-----------:|
Row 1 | 1,024,477 | Johnson & Johnson | Dekalb County |
Row 2 | 4,321 | Frederick | Mercer |

Column 1 Left justified Centered Right justified
Row 1 1,024,477 Johnson & Johnson Dekalb County
Row 2 4,321 Frederick Mercer

15.6 Final Note

Remember that a final step when you think you are done with a project, is to
Click Restart R and Run all Chunks, and then save/preview the Notebook
after doing this to be sure it is what you expect.
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Chapter 16

Tips for working with sf
data class

• Simple Features (sf) cheat sheet

16.1 st_set_geom()

One unique characteristic of sf class data in that the special column containing
the geometry information (often labeled geom) is different from other variables.
Specifically it is sticky. Stickiness in a variable means that as you manipulate
an sf data object, the geom column almost always sticks to the rest of the data
even when you try to remove it.

Imagine what would happen in a regular data.frame if you typed this code
into the console mvc[1, 1:2]. Typically that kind of numerical indexing would
cause R to return row 1 for columns 1 to 2. However, when we try this in R with
an sf object this is what happens:

library(sf)
library(tidyverse)

mvc <- st_read('../SpatialEpi-2021/DATA/GA_MVC/ga_mvc.gpkg')

## Reading layer `ga_mvc' from data source
## `/Users/mkram02/Library/CloudStorage/OneDrive-EmoryUniversity/EPI563-Spatial Epi/SpatialEpi-2021/DATA/GA_MVC/ga_mvc.gpkg'
## using driver `GPKG'
## Simple feature collection with 159 features and 17 fields
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## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -85.60516 ymin: 30.35785 xmax: -80.83973 ymax: 35.00066
## Geodetic CRS: WGS 84

mvc[1, 1:2]

## Simple feature collection with 1 feature and 2 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -82.55071 ymin: 31.46925 xmax: -82.04858 ymax: 31.96618
## Geodetic CRS: WGS 84
## GEOID NAME geom
## 1 13001 Appling County, Georgia MULTIPOLYGON (((-82.55069 3...

Notice that we did get the first row, and the first and second column but we
also got the geom column even though we didn’t request it. This stickiness is
generally desirable, because it is so important to keep geographic/geometry data
connected to attribute data. However there are times when we want to drop
that information. There are several ways to do so, but here is the most explicit
way:

mvc2 <- st_set_geometry(mvc, NULL)

This literally erases or sets to NULL the geometry column. It cannot be retrieved
without going back to the original data.

# look at the class of the original and the modified object
class(mvc)

## [1] "sf" "data.frame"

class(mvc2)

## [1] "data.frame"

# look at the first row and 1-2nd column after NULLing geom
mvc2[1, 1:2]

## GEOID NAME
## 1 13001 Appling County, Georgia
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16.2 st_as_sf()

There are also times when, inextricably, your data set that seems like an sf
object, but you get an error message that the data is not the right type because
it does not have geometry information or not being sf.

This can happen when a data manipulation step strip away some sf data class
even though the geom column still exists. When this happens you can reinstate
the class status by calling st_as_sf(). Essentially this is a formal way for
declaring an object to be sf by explicitly defining the spatial component.

16.3 st_crs()

Spatial coordinate reference systems (CRS) and projections are critically impor-
tant for managing and visualizing spatial data. The spatial information in the
sf object is determined by the values of the coordinates contained in the geom
or geometry column, but those values assume a known and defined coordinate
system. For instance unprojected data is typically measured as degrees of lati-
tude or longitude, but even these units can vary depending on which geodetic
system and datum are used.

So how do you know what you’re working with? The function st_crs() return
whatever information is stored with the object about the CRS/projection.

st_crs(mvc)

## Coordinate Reference System:
## User input: WGS 84
## wkt:
## GEOGCRS["WGS 84",
## ENSEMBLE["World Geodetic System 1984 ensemble",
## MEMBER["World Geodetic System 1984 (Transit)"],
## MEMBER["World Geodetic System 1984 (G730)"],
## MEMBER["World Geodetic System 1984 (G873)"],
## MEMBER["World Geodetic System 1984 (G1150)"],
## MEMBER["World Geodetic System 1984 (G1674)"],
## MEMBER["World Geodetic System 1984 (G1762)"],
## MEMBER["World Geodetic System 1984 (G2139)"],
## ELLIPSOID["WGS 84",6378137,298.257223563,
## LENGTHUNIT["metre",1]],
## ENSEMBLEACCURACY[2.0]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433]],
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## CS[ellipsoidal,2],
## AXIS["geodetic latitude (Lat)",north,
## ORDER[1],
## ANGLEUNIT["degree",0.0174532925199433]],
## AXIS["geodetic longitude (Lon)",east,
## ORDER[2],
## ANGLEUNIT["degree",0.0174532925199433]],
## USAGE[
## SCOPE["Horizontal component of 3D system."],
## AREA["World."],
## BBOX[-90,-180,90,180]],
## ID["EPSG",4326]]

In the most recent version of sf, what is returned by st_crs() is two pieces of
information:

1. The first piece is labeled User input: and in this case reads WGS 84, sug-
gesting this object is based on this datum and CRS.

2. The second piece of information is labeled wkt: which stands for Well-
Known Text. This is a standardized and structured format for describing
and annotating coordinate/projection information. There is more detail
than you probably want on the structure of WKT for CRS here. In short
it includes these features:

a. The base datum and underlying ellipsoid, which in this case is WGS 84
b. Specific parameters including the prime meridian, the coordinate system
c. The ID, which often is represented as the EPSG code.

The fact that the object mvc has EPSG code of 4326 suggests it is a simple,
unprojected, WGS-84 CRS (e.g. see here).
Occasionally the WKT is more complex, perhaps because there have been pre-
vious transformations which were stored in the metadata encoded in WKT.
In that case, closer examination of the WKT may be needed to identify the
CRS/projection. For instance is there a TARGETCRS mentioned? That may
be the current CRS.
Another trick that may get you most quickly to the data you specifically need
(which is usually to know the EPSG code of the data, if one has been applied)
is this code:

# Extract only the CRS ID code from the object
st_crs(mvc)$srid

## [1] "EPSG:4326"

http://docs.opengeospatial.org/is/12-063r5/12-063r5.html#43
https://epsg.io/
https://epsg.io/?q=4326
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Tips for using dplyr

Here are a few handy resources with more detail on wrangling with dplyr and
tidyr:

• dplyr overview
• Data transformation with dplyr cheat sheet
• Epidemiologists R Handbook - tidy data

As is the case in many software packages, there is always more than one way
to get something done in R! Base-R tools can accomplish all kinds of tasks, but
sometimes they are cumbersome and inefficient.

Because most of our use of R as epidemiologists is focused on the tools of data
science, you might find the diverse and continually evolving tidyverse a great
toolbox to explore. Originated by Hadley Wickham (founder of RStudio), the
packages constituting the tidyverse are now contributed by lots of different
people. What they have in common is an interest in handling data in tidy ways.
R for Data Science is an authoritative guide to tidy data, and many of the tools
constituting the tidyverse including ggplot2, dplyr and more.

This appendix is a very brief introduction to the dplyr package which is a set
of data manipulation functions. In other words it is the epidemiologists’ go-to
package for data manipulation, recoding, and preparation in R.

There are two high-level observations about how we will use dplyr this semester:

1. dplyr functions can be thought of as verbs. That means each one is a
tool to act on your data, producing a change. So your question is “what
do I want to change?”

2. Functions in dplyr (and in many other parts of the tidyverse for that
matter) can be stand alone code. Or alternatively they can be chained
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https://dplyr.tidyverse.org/
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://epirhandbook.com/transition-to-r.html?q=tidy#tidy-data
https://r4ds.had.co.nz/
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together in a sequence. This chaining (called piping because the tool to
connect or chain steps is called a pipe and looks like this: %>%) can make
your code both easier for humans to read, and also helps run a sequence
of steps more efficiently.

For the examples below, I will use the Georgia motor vehicle crash mortality
dataset where the unit of observation (e.g. the content of one row of data) is
a Georgia county, and the columns are variable names. This dataset is also
explicitly spatial meaning that it includes geography information regarding the
boundaries of each county, contained with the geom column, as is typical for sf
class data in R.

Here is what the first few rows of the dataset looks like (minus the geom column):

## Reading layer `ga_mvc' from data source
## `/Users/mkram02/Library/CloudStorage/OneDrive-EmoryUniversity/EPI563-Spatial Epi/SpatialEpi-2021/DATA/GA_MVC/ga_mvc.gpkg'
## using driver `GPKG'
## Simple feature collection with 159 features and 17 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -85.60516 ymin: 30.35785 xmax: -80.83973 ymax: 35.00066
## Geodetic CRS: WGS 84

## GEOID NAME variable estimate County
## 1 13001 Appling County, Georgia B00001_001 1504 Appling County
## 2 13003 Atkinson County, Georgia B00001_001 875 Atkinson County
## 3 13005 Bacon County, Georgia B00001_001 945 Bacon County
## 4 13007 Baker County, Georgia B00001_001 390 Baker County
## 5 13009 Baldwin County, Georgia B00001_001 2943 Baldwin County
## 6 13011 Banks County, Georgia B00001_001 1767 Banks County
## MVCDEATHS_05 MVCDEATHS_14 MVCDEATH_17 TPOP_05 TPOP_14 TPOP_17
## 1 4 4 10 17769 18540 18521
## 2 5 1 3 8096 8223 8342
## 3 7 5 0 10552 11281 11319
## 4 1 1 1 3967 3255 3200
## 5 6 8 13 46304 45909 44906
## 6 4 8 6 16683 18295 18634
## NCHS_RURAL_CODE_2013 nchs_code rural MVCRATE_05 MVCRATE_14 MVCRATE_17
## 1 6 Non-core Rural 22.51111 21.57497 53.99276
## 2 6 Non-core Rural 61.75889 12.16101 35.96260
## 3 6 Non-core Rural 66.33813 44.32231 0.00000
## 4 4 Small metro non-Rural 25.20797 30.72197 31.25000
## 5 5 Micropolitan non-Rural 12.95784 17.42578 28.94936
## 6 6 Non-core Rural 23.97650 43.72779 32.19921
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17.1 select()

The first verb of dplyr is called select() and it is useful when you want to
remove or select specific columns/variables. For instance, as mentioned this
dataset has 17 attribute columns plus the geom column. But perhaps we only
need three variables, and we decided it would be easier to exclude the unneeded
variables? Then we can select() those we want (or inversely we can select
those we don’t want).

There are three useful tips on using select() with spatial data:

1. To select variables to keep simply list them (e.g. select(data, var1,
var2, var3))

2. If it is easier to only omit specific variables (e.g. perhaps you have 100
variables and you only want to drop 3), place a negative sign before the
name (e.g. select(data, -var5, -var6)).

3. Finally, something specific to working with sf spatial data is that the
geometry column (typically named geom or geometry) is sticky. That
means that it’s hard to get rid of it. That’s actually a good thing. You
usually want the geometry to stick with the attribute data. But occasion-
ally you might want to convert you spatial sf data object into an aspatial
data.frame. To do this you must first set the geometry to be null like this:
aspatial.df <- st_set_geometry(spatial.df, NULL). See additional
info here.

Let’s do that with the motor vehicle crash data.

# First we read in the dataset, which is stored as a geopackage
mvc <- st_read('GA_MVC/ga_mvc.gpkg')

# Look at column names
names(mvc)

# For this example we do not want the geom column because it is too big to view
mvc2 <- st_set_geometry(mvc, NULL)

# Creating a new object with only 4 attributes
mvc2 <- select(mvc2, GEOID, NAME, rural, MVCRATE_05, MVCRATE_17)

# look at column names
names(mvc2)

## [1] "GEOID" "NAME" "variable"
## [4] "estimate" "County" "MVCDEATHS_05"
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## [7] "MVCDEATHS_14" "MVCDEATH_17" "TPOP_05"
## [10] "TPOP_14" "TPOP_17" "NCHS_RURAL_CODE_2013"
## [13] "nchs_code" "rural" "MVCRATE_05"
## [16] "MVCRATE_14" "MVCRATE_17" "geom"

## [1] "GEOID" "NAME" "rural" "MVCRATE_05" "MVCRATE_17"

17.2 mutate()

Another frequently needed verb is called mutate() and as you might guess
it changes your data. Specifically mutate() is a function for creating a new
variable, possibly as a recode of an older variable. The mvc data object has 159
rows (one each for n=159 counties).

Let’s imagine that we wanted to create a map that illustrated the magnitude
of the change in the rate of death from motor vehicle crashes between 2005
and 2017. To do this we want to create two new variables that we will name
delta_mr_abs (the absolute difference in rates) and delta_mr_rel (the relative
diference in rates).

# Now we make a new object called mvc2
mvc3 <- mutate(mvc2,

delta_mr_abs = MVCRATE_05 - MVCRATE_17,
delta_mr_rel = MVCRATE_05 / MVCRATE_17)

If you look at the help documentation for mutate() you’ll see that the first
argument is the input dataset, in this case mvc. Then anywhere from one to
a zillion different ‘recode’ steps can be included inside the parentheses, each
separated by a comma. Above, we created two new variables, one representing
the absolute and the other representing the relative difference in rates between
the two years.

We can look at the first few rows of selected columns to see the new variables:

head(mvc3)

## GEOID NAME rural MVCRATE_05 MVCRATE_17 delta_mr_abs
## 1 13001 Appling County, Georgia Rural 22.51111 53.99276 -31.481650
## 2 13003 Atkinson County, Georgia Rural 61.75889 35.96260 25.796294
## 3 13005 Bacon County, Georgia Rural 66.33813 0.00000 66.338135
## 4 13007 Baker County, Georgia non-Rural 25.20797 31.25000 -6.042034
## 5 13009 Baldwin County, Georgia non-Rural 12.95784 28.94936 -15.991517
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## 6 13011 Banks County, Georgia Rural 23.97650 32.19921 -8.222703
## delta_mr_rel
## 1 0.4169284
## 2 1.7173090
## 3 Inf
## 4 0.8066549
## 5 0.4476038
## 6 0.7446303

17.3 filter()

While select() above was about choosing which columns you keep or drop,
filter() is about choosing which rows you keep or drop. If you are more
familiar with SAS, filter() does what an if or where statement might do.

Imagine we wanted to only map the urban counties, and omit the rural counties.
We could do this be defining a filtering rule. A rule is any logical statement
(e.g. a relationship that can be tested in the data and return TRUE or FALSE).

Here we create a new dataset, mvc4 that is created from mvc3 but is restricted
only to non-Rural counties:

mvc4 <- filter(mvc3, rural == 'non-Rural')

dim(mvc3) # dimensions (rows, columns) of the mvc3 object

## [1] 159 7

dim(mvc4) # dimensions (rows, columns) of the restricted mvc4 object

## [1] 102 7

As you can see the original object (mvc3) had 159 rows, while the filtered object
(mvc4) has only 102, reflecting the number of non-Rural counties in Georgia.
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Although the example above used only one filtering rule (e.g. keep
only rows where rural == 'non-Rural'), you could construct a
complex filter by including several different logical tests within
the filter() function, each separated by a comma. For instance
you could filter for non-rural counties with a population above
100,000 and in a specified region of the state, assuming you had
variables indicating each of those values.

17.4 arrange()

Occasionally you might want to sort a dataset, perhaps to find the lowest or
highest values of a variable, or to group like values together. Sorting with
dplyr uses the arrange() verb. By default, data is arranged in ascending
order (either numerical or alphabetical for character variables), but you can
also choose descending order as below:

mvc5 <- arrange(mvc3, desc(MVCRATE_17))

head(mvc5)

## GEOID NAME rural MVCRATE_05 MVCRATE_17 delta_mr_abs
## 1 13307 Webster County, Georgia Rural 38.81988 115.16315 -76.34327
## 2 13269 Taylor County, Georgia Rural 22.57336 73.69197 -51.11860
## 3 13165 Jenkins County, Georgia Rural 47.00353 57.03205 -10.02853
## 4 13001 Appling County, Georgia Rural 22.51111 53.99276 -31.48165
## 5 13087 Decatur County, Georgia non-Rural 18.17455 52.40305 -34.22851
## 6 13191 McIntosh County, Georgia non-Rural 16.11863 49.62427 -33.50564
## delta_mr_rel
## 1 0.3370859
## 2 0.3063205
## 3 0.8241598
## 4 0.4169284
## 5 0.3468223
## 6 0.3248135

17.5 %>% Pipe operator

Everything we’ve done up until now has been one step at a time, and we created
five different datasets to avoid overwriting our original. But one source of coding



17.5. %>% PIPE OPERATOR 391

efficiency in R comes from the careful chaining or piping together of multiple
steps.

While every verb above required an input dataset as the first argument, when
we chain steps, the functions take the output of the previous step as the input
for the current step. For example this code chunk does everything we did above
in one step:

mvc6 <- mvc %>%
st_set_geometry(NULL) %>% # remove geom column
select(GEOID, NAME, rural, MVCRATE_05, MVCRATE_17) %>%# select target variables
mutate(delta_mr_abs = MVCRATE_05 - MVCRATE_17, # recode variables

delta_mr_rel = MVCRATE_05 / MVCRATE_17) %>%
filter(rural == 'non-Rural') %>% # filter (restrict) rows
arrange(desc(MVCRATE_17)) # sort by MVCRATE_17

dim(mvc6)

## [1] 102 7

head(mvc6)

## GEOID NAME rural MVCRATE_05 MVCRATE_17 delta_mr_abs
## 1 13087 Decatur County, Georgia non-Rural 18.17455 52.40305 -34.228506
## 2 13191 McIntosh County, Georgia non-Rural 16.11863 49.62427 -33.505640
## 3 13033 Burke County, Georgia non-Rural 34.87510 39.96093 -5.085824
## 4 13189 McDuffie County, Georgia non-Rural 18.67501 37.21276 -18.537756
## 5 13055 Chattooga County, Georgia non-Rural 11.76194 36.33428 -24.572337
## 6 13227 Pickens County, Georgia non-Rural 29.32874 34.82335 -5.494612
## delta_mr_rel
## 1 0.3468223
## 2 0.3248135
## 3 0.8727301
## 4 0.5018442
## 5 0.3237147
## 6 0.8422147

In practice, it takes some experience to write a whole chain of steps that do
what you want. I often go iteratively, adding one step at a time and checking
that each step is doing what I expected.
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17.6 group_by() and summarise()

A dplyr verb that can be incredibly important for spatial epidemiology is the
combination of group_by() with summarise(). These two are used to aggregate
and summarize data. For instance if you had data arranged with individual
persons as the unit of analysis (e.g. 1 person = 1 row of data), but you wanted to
aggregate them so you got counts per census tract, you could use group_by() to
arrange the rows into groups defined by census tract, and then use summarise()
to do some calculation (e.g. count, mean, sum, etc) separately for each group.

In fact, you can enter multiple variables into the group_by() argument and
the result is the cross-classification of grouping. For example, imagine you
had COVID-19 line listing data where each row is a single person, and rows
include age (young or old) as well as county of residence. If you enter
group_by(county, age) the data will be stratified by age within county. If
you then used summarise(count = n()), you would get a count of individual
cases in each age group and in each county. You could use this to make a map
of the density of young and old cases by county.

An important feature of sf data objects when operated on by dplyr verbs, is
that there is built in functionality to handle geography/geometry data. So for
instance, imagine we wanted to create a map where we aggregated all of the
rural counties and separately all of the non-rural counties.

mvc7 <- mvc %>%
group_by(rural) %>%
summarise(avg_mr_17 = mean(MVCRATE_17))

mvc7 %>% st_set_geometry(NULL)

## # A tibble: 2 x 2
## rural avg_mr_17
## * <chr> <dbl>
## 1 Rural 29.2
## 2 non-Rural 18.8

As you can see (and as you might have predicted), the aggregation changed
our dataset from 159 rows to 2 rows: one row for rural and one for non-rural.
Let’s see what it did to the spatial data by first mapping the original data, and
then mapping the aggregated data. Read more about qtm()) and other tmap
functions.

# Using the qtm() function from tmap to create map of original data
m1 <- qtm(mvc, 'MVCRATE_17')
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# Using the qtm() function from tmap package to create a map
m2 <- qtm(mvc7, 'avg_mr_17')

tmap_arrange(m1, m2)

MVCRATE_17
0 to 20
20 to 40
40 to 60
60 to 80
80 to 100
100 to 120

avg_mr_17
18 to 20
20 to 22
22 to 24
24 to 26
26 to 28
28 to 30

As with other dplyr verbs (e.g. mutate(), select(), filter()),
you are not constrained to using group_by() with only a sin-
gle variable. Returning to the example with individual obser-
vations nested within census tracts, you could use new_data <-
individ_data %>% group_by(gender, year, tract) to create
a file that has a row of data for each unique stratum of gender *
year * census tract.
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You may see a message in the R console when you run group_by()
followed by summarise() that says something like summarise()
ungrouping output override with .groups argument. What
this is telling you is that R automatically ungrouped your data.
More specifically it removed grouping by the last group_by()
variable, to avoid unintended consequences from persistent group-
ing. If you group_by() two or more variables it only drops the
last grouping*, so other grouping may persist. All grouping can
be removed by adding ungroup() after the summarise().

17.7 join()

Merging data is so common in epidemiology, but also prone to so many unin-
tended consequences that it is important to pay attention to the options for
successful merges or ‘table joins’ as they are called in the parlance of relational
databases.

Because of the challenges with getting the desired output from a merge or
join(), dplyr has a set of verbs including: left_join(), right_join(),
inner_join(), full_join() and more. Here is documentation of the many
ways to join!

A join is simply a way to merge two tables when they have some common key
or ID variable. For our purposes in this class I want to focus on several key
features of joining that are important for spatial analysis.

For this explanation we will work with two separate files: an aspatial data.frame
with the motor vehicle crash data called mvc.df; and a sf object of all U.S.
counties, called us. The unit of analysis in each is the county, there is a common
ID or key variable in the county FIPS code (named GEOID), but they have a
different number of rows:

dim(mvc.df) # this is dimensions for the aspatial attribute data

## [1] 159 17

dim(us) # this is dimensions for the spatial county polygon sf data

## [1] 3221 13

https://dplyr.tidyverse.org/reference/join.html
https://dplyr.tidyverse.org/reference/join.html
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As expected, the mvc.df has the 𝑛 = 159 counties that makeup Georgia. How-
ever the spatial/geography information has 𝑛 = 3220 rows, corresponding to
the number of U.S. counties and territories.

First, the difference between the xxxx_join() is how the two tables relate to
one another. For most purposes a left_join() or right_join() will do the
trick. Here is the difference: a left_join() starts with the first object and
joins it to the second. In contrast the right_join() starts with the second
object and joins it to the first. What does that mean?

# left join, starting with mvc.df as the first object, us as the second
test.left <- mvc.df %>%
left_join(us, by = 'GEOID')

dim(test.left)

## [1] 159 29

class(test.left)

## [1] "data.frame"

# right join, starting with mvc.df as the first object
test.right <- us %>%
left_join(mvc.df, by = 'GEOID')

dim(test.right)

## [1] 3221 29

class(test.right)

## [1] "sf" "data.frame"

What did we learn?

• The number of rows in the output dataset is dictated by two things:
• the order the objects are written (e.g. in this case mvc.df was always first

and us was always second, contained within the join())
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• the direction of the join. In a left_join() the merge begins with mvc.df,
which limits the output to only 159 rows. In contrast with right_join()
the merge begins with us, which limits the output to 3220 rows.

• The class of the output data depends on which object was first. Notice
that in the left_join(), because we started with an aspatial data.frame,
the output is also an aspatial data.frame (although the geom column is
now incorporated!). In contrast with the right_join() which put the
sf object us first, the class was sf.

This means that when merging or joining you should think about whether you
want all of the rows of data to go to the output, or only some; and think about
whether (or how) you can make the sf object be first.

In the scenario above, we only want 𝑛 = 159 rows, and thus want to exclude all
of the non-Georgia counties. That means we must have mvc.df first. Therefore,
we could force the object to be of class sf like this (also see info here):

test.left <- mvc.df %>%
left_join(us, by = 'GEOID') %>%
st_as_sf()

dim(test.left)

## [1] 159 29

class(test.left)

## [1] "sf" "data.frame"

Joining when Key/ID variables have different names

Sometimes we have a common variable, such as the county FIPS code, but the
variable names are different. For example in the code below, the column storing
the unique county ID for the mvc.df is named GEOID. However the column in
the sf object us that stores the unique county ID is named FIPS. It is still
possible to use the join() verbs by relating them (inside a c() concatenation)
in the order in which the datasets are introduced.

# if us had the FIPS code stored in the column named 'FIPS'
test.left <- mvc.df %>%
left_join(us, by = c('GEOID' = 'FIPS'))
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17.8 Reshaping (transposing) data

There are numerous other intermediate to advanced data manipulation options
available in dplyr and the tidyverse, but most are outside of the scope of this
course. One final verb that represents a more sophisticated kind of data change,
is however useful in preparing spatial data. That is the tools to transpose or
reshape a rectangular dataset from wide to long or vice versa. Transposing
is useful when, for example, you have a column with a disease rate for each
of several years (these data are wide), but you want a dataset where a single
column contains the rate and a separate column indicates the year (these data
are long). This article introduces the notion of pivoting data; you can also
review this section in R for Data Science

Two related verbs help pivot tidy data one direction or the other:

17.8.1 pivot_longer() for going from wide to long

Reviewing the article linked in the previous paragraph (or searching the help
documentation) will give you more detail. But as an example we will look at
how to take our current mvc dataset, which contains the motor vehicle crash
mortality rate for each county from three different years (2005, 2014, 2017) as
separate columns (e.g. it is wide):

# this code shows the first 6 rows (the head) of the relevant variables
mvc %>%
st_set_geometry(NULL) %>%
select(GEOID, NAME, MVCRATE_05, MVCRATE_14, MVCRATE_17) %>%
head()

## GEOID NAME MVCRATE_05 MVCRATE_14 MVCRATE_17
## 1 13001 Appling County, Georgia 22.51111 21.57497 53.99276
## 2 13003 Atkinson County, Georgia 61.75889 12.16101 35.96260
## 3 13005 Bacon County, Georgia 66.33813 44.32231 0.00000
## 4 13007 Baker County, Georgia 25.20797 30.72197 31.25000
## 5 13009 Baldwin County, Georgia 12.95784 17.42578 28.94936
## 6 13011 Banks County, Georgia 23.97650 43.72779 32.19921

For mapping a time-series it is often beneficial to have the data long, which is to
say we want the data with a single column for mvc_rate and a separate column
for year, and then we can choose to create a map for each subset (defined by
year) of the data.

https://tidyr.tidyverse.org/articles/pivot.html
https://r4ds.had.co.nz/tidy-data.html#pivoting
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mvc_long <- mvc %>%
select(GEOID, NAME, MVCRATE_05, MVCRATE_14, MVCRATE_17) %>%
as_tibble() %>%
pivot_longer(cols = starts_with("MVCRATE"),

names_to = c(".value", "year"),
values_to = "mvc_rate",
names_sep = "_") %>%

mutate(year = 2000 + as.numeric(year)) %>%
st_as_sf()

First let’s look at the results, and then I’ll walk through each of the steps in the
code chunk above:

mvc_long %>%
st_set_geometry(NULL) %>%
head()

## # A tibble: 6 x 4
## GEOID NAME year MVCRATE
## <chr> <chr> <dbl> <dbl>
## 1 13001 Appling County, Georgia 2005 22.5
## 2 13001 Appling County, Georgia 2014 21.6
## 3 13001 Appling County, Georgia 2017 54.0
## 4 13003 Atkinson County, Georgia 2005 61.8
## 5 13003 Atkinson County, Georgia 2014 12.2
## 6 13003 Atkinson County, Georgia 2017 36.0

As you can see, we now have 3 rows for Appling County (GEOID 13001):
one for each of the three years, with different MVCRATE in each. That is a long
dataset. So how did that code work? Here is a step-by-step of what that code
chunk did:

1. The first step was to create a new object, mvc_long that will be the
outcome of all of the steps piped together. The input to the pipe is the
original dataset, mvc.

2. The use of as_tibble() is a current work around to an annoying ‘feature’
of the pivot_* functions and that is that they don’t play well with sf
data classes. So when we use as_tibble() we are essentially removing the
class designation, (making it a tibble which is a tidy object); importantly
this is different from st_set_geometry(NULL) which actually omits the
geometry column (e.g. see additional detail here).

3. I used select() to pull out only the variables of interest, although you
could leave other variables if desired.
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4. pivot_longer() can be called in several ways. The way I call it here, I
first specified which columns to pivot by defining the cols = argument
to be all variables that start with the phrase MVCRATE. starts_with() is
another utility function in dplyr. So this step told R that the columns
I wanted changed were the three called MVCRATE_05, MVCRATE_12 and
MVCRATE_17

5. The names_to = argument defines the column name in the new dataset
that will delineate between the three variables (e.g. MVCRATE_05, etc). In
our case we wanted the value to be the year not the word MVCRATE_12.
To accomplish this we had to do some extra work:

• First, note that we used the option names_sep = '_'. That is another
utility function that says we want to break a string into parts wherever a
designated separated (e.g. the underscore, _) occurs. So this will take the
column name MVCRATE_05 and break it at the underscore to return two
parts: MVCRATE and 05.

• Because breaking it into two would produce two answers, we had to make
two variable names in the names_to = to hold them. Thus names_to =
c(".value", "year"). In other words the column labeled .variable
will hold the value MVCRATE and the column year will hold the value 05

• '.value' is actually a special value in this instance. It is a way of desig-
nating that the first part was essentially junk. As such it will automatically
be discarded.

6. values_to = 'mvcrate'. This is where we define the name in the new
dataset that will hold the actual value (e.g. the MVC mortality rate itself.)

7. The mutate() step is just a way to take the year fragment (e.g. 05, 12,
17) and make it into calendar years by first making it numeric, and then
simply adding 2000.

8. The final step, st_as_sf() is because all of the manipulations above ac-
tually removed the objects designation as class sf. Importantly, it DID
NOT remove the geom column, but the object is not recognized (e.g. by
tmap) as a spatial object. So st_as_sf() simply declares that it is in fact
sf.

The best way to wrap your head around this is to start trying to reshape or
transpose data you have on hand. You may need to look for additional help or
examples online, but with time it will become more intuitive.

To see why you might have gone through all of that work, we will use the
tm_facets() (read more abouttmap_facets() here).

tm_shape(mvc_long) +
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tm_fill('MVCRATE') +
tm_borders() +

tm_facets(by = 'year')

2005 2014

2017

MVCRATE
0 to 20
20 to 40
40 to 60
60 to 80
80 to 100
100 to 120

17.8.2 pivot_wider()

Of course it is also possible to go the other way, from long to wide. This often
is easier. Here is some code to return to our original shape:

mvc_wide <- mvc_long %>%
as_tibble() %>%
mutate(my_var = paste0('MVCRATE ', year)) %>%
select(-year) %>%
pivot_wider(names_from = my_var,

values_from = MVCRATE) %>%
st_as_sf()
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Take a look at the output:

mvc_wide %>%
st_set_geometry(NULL) %>%
head()

## # A tibble: 6 x 5
## GEOID NAME `MVCRATE 2005` `MVCRATE 2014` `MVCRATE 2017`
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 13001 Appling County, Georgia 22.5 21.6 54.0
## 2 13003 Atkinson County, Georgia 61.8 12.2 36.0
## 3 13005 Bacon County, Georgia 66.3 44.3 0
## 4 13007 Baker County, Georgia 25.2 30.7 31.2
## 5 13009 Baldwin County, Georgia 13.0 17.4 28.9
## 6 13011 Banks County, Georgia 24.0 43.7 32.2

It appears that we have returned to 1 row per county. So what were all of those
steps?

1. Once again, we start by removing the class designation sf but calling
as_tibble()

2. mutate() is called to re-create a variable that will become the column
names.

3. We no longer need the old year variable so I omit it with select(-year)
4. Finally the pivot_wider() call has arguments defining which current

variable contains the informatino that will be the new column name
(names_from =) and which current variable contains the information
that will population the cells within that column (values_from =).
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Chapter 18

Tips for using tmap

Base-R has capable data visualization and plotting capabilities, but these fall
short when doing anything but the most simple maps with spatial data. Many
other packages including sp and ggplot2 also have functionality specifically
optimized for the data visualization needs of the spatial epidemiologist. We will
have brief introductions to these and other packages.

But for this semester the workhorse mapping/cartography tool will be the tmap
(thematic mapping) package. This package builds on the grammar of graphics
logic built into ggplot2 where data visualizations are conceived of as a series
of layers of information (e.g. axes, plot space, data points, lines, fill, legends,
titles, etc) systematically stacked one on top of another. With tmap we start
with a spatial object (e.g. a data object of either sf or sp class) and build a
visualization by similarly combining or adding together sequential layers.

Once again, we will use data from the motor vehicle crash mortality dataset
of Georgia counties (a vector polygon spatial data file), along with information
about highways (vector line data file) and trauma centers (vector point data).

First load the package, tmap and browse the help index:

# load the tmap and sf packages
library(tmap)
library(sf)

help('tmap')

After seeing the range of functions within tmap, we will import three datasets
all stored in the geopackage format to begin visualizing:

403
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# import (read) three spatial datasets stored in geopackage format
mvc <- st_read('GA_MVC/ga_mvc.gpkg')
hwy <- st_read('GA_MVC/ga_hwy.gpkg')
trauma <- st_read('GA_MVC/trauma_centers.gpkg')

18.1 tmap mode

One nice feature of tmap is that it has two modes for plotting maps. You may
develop a general preference for one over another, although in my opinion they
serve slightly different purposes.

1. The plot mode produces conventional static maps that are viewed in the
plot pane of R-Studio, or can be saved to a file. These will be the main
maps for dissemination in papers, posters, or many presentations.

2. The view mode is a more interactive plot in an html browser-like window.
This mode allows the user to interact with the map including panning,
zooming, and clicking on spatial objects to view underlying data. This
is great for data exploration, and has extensions for web-served maps.
However it is not so useful for any non-web-based dissemination or when
you want to control the map.

You select the mode with the function tmap_mode() and either 'plot' or
'view' in the parentheses. Note that when you set the mode, all the sub-
sequent maps are in that mode…you must re-submit the tmap_mode() call to
switch back again. By default, the tmap_mode() is 'plot', which means it pro-
duces static maps. We will plot some static maps, then switch to ’view' mode
to compare.

18.2 Quick maps: qtm()

The function qtm() stands for Quick Thematic Maps, and provides a step
up from the simple plot() functions for quickly plotting spatial objects. The
fundamental argument when submitting qtm() is the name of the object to be
plotted.

qtm(mvc)
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This produces the geometry but no other information (note that unlike plot(),
it does not plot a map for every variable!).

To produce a choropleth map (e.g. one in which objects are shaded to represent
an underlying statistic or value), simply add the name of the variable.

qtm(mvc, 'MVCRATE_05')
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MVCRATE_05
0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70

Can you tell how the legend cut-points are determined? We’ll talk about when
this matters and how to change it later.

Now try switching tmap_mode():

tmap_mode('view')

Try these things in view mode:

• By default it will be visible in your R Studio Viewer pane; there is an icon
with a screen and arrow that allows you to show in new window…do this
so it is bigger

• Zoom in and out
• Pan
• Hover over counties (what do you see with hovering?)
• Click on counties (what do you see when you click?)
• Underneath the zoom + / - is an icon like a stack of papers. This changes

the background map (how does the background information change as you
zoom in/out?)
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• Click on icon that looks like stack of pages. This lets you change the
background map (assuming you are currently connected to internet)

To change back (if you like) do this:

tmap_mode('plot')

18.2.1 Customizing qtm() for polygons

For polygon data, you might like to control several features including the title,
the color palette, and the style by which the continuous variables are categorized
in the legend.

qtm(mvc,
fill = 'MVCRATE_17',
fill.style = 'quantile',
fill.palette = 'YlGnBu',
fill.title = 'MVC Mortality \n(2017)')

MVC Mortality 
(2017)

0.0 to 11.4
11.4 to 17.6
17.6 to 23.9
23.9 to 32.3
32.3 to 115.2
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The syntax above customizes the original plot in several ways:

• By changing the fill.style (which is the style by which continuous
variables are categorized in order to plot in a sequential ramp choropleth
map) from the default (fixed or equal intervals) to a quantile style (by
default quantiles have 𝑛 = 5 so they are quintiles although other schemes
including tertiles or quartiles are possible also)

• By choosing a custom color palette, in this case the Yellow-Green-Blue
(YlGnBu) palette, which is one of several built-in options.

• Providing a more informative title to the legend, rather than the default
variable name.

Notice the label for the legend in the code above has “/n” inserted
in the middle of the line. The use of the forward slash creates
what is called an escape character. In this case “/n” inside of a
character string inserts a line break. That is why “(2017)” is not
on the same line as “MVC Mortality”.

18.2.2 Customizing qtm() for lines

qtm() (and tmap generally) can also handle other types of spatial data including
line shape objects, and can provide some customization of the results. Try these
for the highway dataset:

qtm(hwy,
lines.lwd = 2,
lines.col = 'red')
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The basic plot of highways uses default colors and sizes, but the plot here
uses the lines.lwd= argument to specify the line width or thickness. The
lines.col= sets the color.

18.2.3 Customizing qtm() for points

And not surprisingly, there is similar control for point spatial objects, in this
case the locations of the trauma centers.

qtm(trauma,
symbols.size = 'LEVEL_number',
symbols.shape = 'LEVEL')
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LEVEL_number

0.5 1.0 2.0 3.0

LEVEL
Level I
Level II
Level III

Because symbols.size and symbols.shape were specified, the symbolized vari-
ables by modifying the size and shape. There are also settings for color. If
you study the help documentation, notice that some arguments require num-
bers (and thus use LEVEL_number which is an integer) and some allow charac-
ter/factors (and thus use LEVEL).

18.2.4 Finding valid color options

In base R there are many ways to specify colors including using standardized
character strings, as well as HEX codes which are complicated alphanumeric
labels that are used across industries to identify unique colors. Here is one
of many lists of base-R color names: http://www.stat.columbia.edu/~tzheng/
files/Rcolor.pdf

However for mapping we often want not just single colors, but reasonable sets
of colors for symbolizing sequential values, categorical values, or diverging val-
ues. In the coming weeks we will talk about how to choose color and style for
symbolizing maps. There are several sources for finding effective color palettes
for spatial mapping. One of the best resources for choosing a color palette iw
the Color Brewer website.

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3
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Another source of color palettes is actually built right into the tmap package (or
actually it is part of an add-on package you installed called tmaptools). This
tool is actually directly derived from the Color Brewer site above, but helps
make it clear how to name palettes in tmap.

Occasionally this next step has caused my session of R to crash.
Therefore I usually open a second instance of R Studio just to do
the next thing. To do that simply go to Session in the R Studio
menu and click New Session. This creates another completely
independent instance of R Studio (e.g. none of the packages or
data loaded in this current session are present in the new session
unless you specify them).

tmaptools::palette_explorer()

Why did we use the package name (tmaptools) followed by a
double colon (::)? This is a shortcut in R that lets you call a single
function from a package without loading the package. Basically
this says “go look in the package called tmaptools and load this
specified function”. I use this shortcut (in general, not only for
tmaptools) in one of two situations:

– There is a function with the same name in two or more
packages, and specifying which package identifies the one I
mean. For instance we will soon learn the package dplyr
and the function select() in this package is also the name
of a function in another package for handling spatial data
called raster. So I often use dplyr::select() to disam-
biguate.

– In situations like tmaptools::palette_explorer() where
I really only need the one function but currently do not need
anything else from the package.

As you may discover with experimentation, the tmaptools::palette_explorer()
function is actually a small interactive app that opens in a new window and
lets you see an array of color palettes. You can see them divided by sequential,
divergent, and categorical color ramps and you can move the slider to change
how many categories and see the color ranges. The thing you want from this
explorer is the abbreviated names to the left of each color ramp.
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18.3 Building maps with tmap

qtm() is great for quickly making a map, but when you want more control over
the map, you will want to shift to the full functions of tmap.

18.3.1 Building blocks in tmap

tmap produces maps using the grammar of graphics approach which means
building up a final product as the ‘sum’ of several fundamental components,
plus possible options layers. There are three fundamental components of maps
in tmap:

1. Specify the spatial object to map using tm_shape().
2. Following the call to tm_shape() you generally specify the layers you

wish to symbolize or map. In other words specifying a shape doesn’t plot
anything…it just is the starting point. The layers are the actual things
from that object/shape to plot. In the case of polygons you will usually
use tm_fill() to specify a layer about the fill of the polygon, although
other layers are available (e.g. see the base and derived layers listed when
you look at help('tmap')).

3. Finally, in many instances you want to customize other map layout fea-
tures, such as the title or the legend, and you might like to add elements
such as a North arrow or a scale bar.

For a given map, the various layers or steps are connected together in R code
with a plus sign (+); this highlights that a map is the sum of many parts.

NOTE: the use of the pipe (%>%) and the plus (+) is seemingly
the same in that they both connect steps together but they are
not! It is perhaps unfortunate that ggplot2 and tmap do not
use the same pipe as dplyr. Beware that you choose the correct
connector for the function at hand!
The pipe (%>%) links together separate functions. In contrast the
plus (+) in tmap or ggplot2 add sub-parts or instructions to the
main function being called.

Note that steps 1 and 2 can be repeated for as many spatial objects as you wish
to layer. So if you wanted to put points and lines on top of a polygon shape, you
would specify tm_shape() and the corresponding layers for each spatial object
in turn.
This code replicates our first map with qtm(), and basically says, “Start with
the object mvc and symbolize it with two layers: the first fills the polygons to
represent MVCRATE_17 and the second adds polygon borders:
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tm_shape(mvc) +
tm_fill('MVCRATE_17') +
tm_borders()

MVCRATE_17
0 to 20
20 to 40
40 to 60
60 to 80
80 to 100
100 to 120

Look at the help documentation for tm_fill() to see the myriad ways
you can customize this map! It’s a little overwhelming, but I’d suggest
looking at the style and palette arguments, and using the above-mentioned
palette_explorer() to try out different colors and different styles for
cut-points.
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Reverse the order of a color palette
By default, the color palettes – sequential, divergent, and cate-
gorical – are arranged in a particular order. But what if you want
the colors to go in the opposite direction? You can specify this by
putting a hyphen or ‘negative sign’ inside the quotes but before
the name of the selected color palette. Here is an example:

m1<- tm_shape(mvc) +
tm_fill('MVCRATE_17',

palette = 'BuPu',
style = 'quantile') +

tm_layout(main.title = "BuPu color in default order",
inner.margins = c(0.01, 0.01, 0.05, 0.2)) +

tm_borders()
m2<- tm_shape(mvc) +
tm_fill('MVCRATE_17',

palette = '-BuPu',
style = 'quantile') +

tm_layout(main.title = "BuPu color in reverse order",
inner.margins = c(0.01, 0.01, 0.05, 0.2)) +

tm_borders()
tmap_arrange(m1, m2)

BuPu color in default order

MVCRATE_17
0.0 to 11.4
11.4 to 17.6
17.6 to 23.9
23.9 to 32.3
32.3 to 115.2

BuPu color in reverse order

MVCRATE_17
0.0 to 11.4
11.4 to 17.6
17.6 to 23.9
23.9 to 32.3
32.3 to 115.2
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18.3.2 Customizing text on maps

There are several ways you may wish to customize the text on maps. For
example you may want to provide a name for the legend, new labels for the
categories, or a title, subtitle or caption for the whole map.

• To give a title to the legend in a map use the title = 'xxx' in the
tm_fill() (or other layer function) call.

• To change the labels of the legend
• To add a source or credits annotation

# First, I create a vector of my custom legend labels
# (note, there must be same number of labels as there are categories in map)

myLabels <- c('Low (Q1)', 'Q2', 'Q3', 'Q4', 'Hi (Q5)')

tm_shape(mvc) +
tm_fill('MVCRATE_17',

style = 'quantile',
title = 'MVC Rate in 2017',
n = 5,
labels = myLabels) +

tm_borders() +
tm_layout(title = 'Motor Vehicle Crashes per capita in Georgia',

legend.outside = T) +
tm_credits('Source: Georgia OASIS, retrieved 2019')



416 CHAPTER 18. TIPS FOR USING TMAP

Source: Georgia OASIS, retrieved 2019

Motor Vehicle Crashes per capita in Georgia

MVC Rate in 2017
Low (Q1)
Q2
Q3
Q4
Hi (Q5)

The tm_fill() option creates 5 bins or categories for plotting by
default. For that reason it was unnecessary for me to put n = 5
to specify how many categories. However I did so to be explicit
about the number of categories because I am provide a vector
of 5 labels to correspond to the categories. Of course one could
choose a non-default number of categories (e.g. n = 3 or n = 7),
and if custom labels are provided there should be as many labels
as categories.

18.3.3 Adding two or more spatial objects in one map

Just like in ArcGIS, additional spatial layers can be added up to produce a more
informative map. For instance if we were interested in how highways and trauma
centers related to motor vehicle mortality rates we could add these layers.

tm_shape(mvc) +
tm_fill('MVCRATE_17',
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style = 'quantile',
palette = 'Purples') +

tm_borders() +

tm_shape(hwy) +
tm_lines(lwd = 2, col = 'red') +

tm_shape(trauma) +
tm_bubbles(shape = 'LEVEL',

col = 'pink')

MVCRATE_17
0.0 to 11.4
11.4 to 17.6
17.6 to 23.9
23.9 to 32.3
32.3 to 115.2

LEVEL
Level I
Level II
Level III

Several things to note about above code:

1. There are three separate spatial objects plotted, and each is called by start-
ing with tm_shape() followed by some additional function specific to the
layer. See the help documentation, or the Tenekes article on Canvas for a
table of which layers are available for which kinds of shapes (e.g. polygons,
points, or lines).
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2. Each step or added feature (e.g. each call with parentheses) is connected
together with plus signs

3. Within each step (e.g. within the parentheses), arguments are separated
with commas

4. I organize my code vertically because I think it makes it more readable
than all on one line.

Try changing these arguments or try substituting different options!

18.4 Controlling layout and map elements

When the audience for your map is yourself, making it look ‘just right’ may not
be critical. However, when you are creating a map to share with colleagues,
other stakeholders, or the public, cartographic design is important for effective
visual communication.

tmap has a wide range of tools to customize the way a single map (or even a set
of maps) looks. In fact there are so many that it can feel overwhelming at first.
The best advice is to use the help documentation often, and experiment a lot!
I will not repeat the help documentation completely, but below I provide some
guidance on several common layout needs and options.

Note that the focus of the examples is for static maps presented with
tmap_mode('plot'). Many of the options behave the same when you are
using the interactive tmap_mode('view'), but because interactive html plots
dynamically resize, some formatting may differ. See ?tm_view() for more
information on options specific to the interactive mode.

18.4.1 Understanding the graphic space in tmap

As you will see in the discussion below, there are many tools to adjust the
size and position of elements so that they all fit in the way you want, and
to accomplish desired graphic layout. But one recurring source of frustration
is understanding which parameters move which parts of the graphical space.
While it is not apparent, what you see in a plot is really a set of nested plot
spaces each with border and margin width control.

To see these you can ‘turn on’ a global option called design.mode using the
function tmap_options(). What this does is colorize different parts of the plot
space, with messaging about the names of each space. This can help you figure
out whether you need to control inner.margins, outer.margins or move things
from a panel to an overall plot space.

This example uses a two-map plot to illustrate the information returned:
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# Turn 'on' the design.mode option
tmap_design_mode(T)

# Plot a map of two rates, side by side (e.g. see small multiples below)
tm_shape(mvc) +
tm_fill(c('MVCRATE_05', 'MVCRATE_17'),

palette = 'Purples',
style = 'quantile') +

tm_borders()

MVCRATE_05
0.00 to 12.76
12.76 to 18.79
18.79 to 25.71
25.71 to 36.15
36.15 to 66.34

MVCRATE_17
0.0 to 11.4
11.4 to 17.6
17.6 to 23.9
23.9 to 32.3
32.3 to 115.2

# turn off the design.mode unless you want to see it on the next map you plot
tmap_design_mode(F)

As you will see from the text output (which interprets the colors), there are
actually several different plot spaces.

• device (yellow) means the full extent of your output device, whether that
be your screen, a .png or a .pdf
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• outer.margins (indicated by green) shows how far the edges of the plot
area are from the edge of the graphic device

• master shape (indicated in red) is the actual plotted map. Below you
will see instructions on how to adjusted inner.margins; these margins
are the distance between the red area and the blue area. If you want the
map to be smaller inside the frame, use inner.margins to shrink the size
of the red area

18.4.2 Controlling map layout

The function tm_layout() controls title, margins, aspect ratio, colors, frame,
legend, among many other things. Type ?tm_layout() to review the help
documentation to see the long list of arguments that you can modify. Arguments
via the tm_layout() function are incorporated into a map by ‘adding’ (e.g. using
the + sign) to a tmap object, just as you would add tm_fill() or tm_borders().

# Using tm_fill and tm_layout to control layout and text
tm_shape(mvc) +
tm_fill('MVCRATE_17',

style = 'quantile',
palette = 'BuPu',
title = 'Deaths per 100,000, \n2017') +

tm_borders(alpha = 0.2) +
tm_layout(main.title = 'Car crash mortality in Georgia',

inner.margins = c(0.02, 0.02, 0.1, 0.2))
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Car crash mortality in Georgia

Deaths per 100,000, 
2017

0.0 to 11.4
11.4 to 17.6
17.6 to 23.9
23.9 to 32.3
32.3 to 115.2

Explaining the code above:

Aspects of the layout were specified in different steps:

• tm_fill() permits the specification of the title for the legend. Notice the
inclusion of \n within the title. As noted above, this is called an escape
character and this particular one forces a line break/carriage return, which
let me wrap the title of the legend onto two lines

• tm_borders() is familiar, but use the alpha argument to specify trans-
parency in the borders, resulting in them being lighter in color. alpha
is a parameter ranging from 0 (fully transparent, or invisible) to 1 (no
transparency). You can use alpha in many different settings; it is useful
in some maps with many units (e.g. map of all U.S. counties) to diminish
the visual impact of boundaries by using transparency.

• tm_layout() is a function with many purposes, but here it does two
things: add an overall title to the map, and adjust the spacing inside
the frame line so things fit:

• inner.margins controls how big the mapped figure is in relation to the
overall frame; using this argument is a way to squish things around so
that the legend or other elements fit without bumping into each other.
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– The argument expects a vector of four number going bottom, left, top,
right

– The values in the vector of four numbers can each range from 0 to 1,
representing a relative amount of space between the map object and
the frame. So the use of inner.margins = c(0.02, 0.02, 0.1,
0.2) means that there is very little extra space in the bottom and
left (only 0.02 each), but more extra space at the top (0.1) and even
more on the right (0.2). I arrived at these values through trial and
error necessary to keep the legend from bumping into the map.

# Adding a histogram to the legend and moving the legend outside of the frame
tm_shape(mvc) +
tm_fill('MVCRATE_17',

style = 'quantile',
palette = 'BuPu',
title = 'Deaths per 100,000, \n2017',
legend.hist = T) +

tm_borders(alpha = 0.2) +
tm_layout(main.title = 'Car crash mortality in Georgia',

legend.outside = T)
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Car crash mortality in Georgia

Deaths per 100,000, 
2017

0.0 to 11.4
11.4 to 17.6
17.6 to 23.9
23.9 to 32.3
32.3 to 115.2
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Explaining the code above:

This code differed in three ways:

• I used the option to request a histogram to be with the legend, using
legend.hist = T in the tm_fill() function

• I moved the entire legend outside of the frame by specifying
legend.outside = T in the tm_layout() function. Note that in
addition to shifting the legend outside, you can also control its location
by using legend.position (for changing location inside the frame) or
legend.outside.position (for controlling position outside the frame).

18.4.3 Adding map elements

Finally, you may wonder how to add map elements like north arrows, scale bars,
captions, etc.
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Function Use
tm_compass() To add a north arrow or compass rose, use

tm_compass() and specify type = to
include a range of options (see help). The
size, position, color, and font information
can all be controlled

tm_scale_bar() Create and control a scale bar with options
to change the units, position, size, and font

tm_credits() Adds an inset text field to provide map
source information or other notes

tm_graticules() and
tm_grid()

Add coordinate grid or graticule lines to
map

tm_logo() Add a user-defined logo to a map

Here is an extremely busy map with too many elements, illustrating these fea-
tures:

tm_shape(mvc) +
tm_fill('MVCRATE_17',

style = 'quantile',
palette = 'BuPu',
title = 'Deaths per 100,000, \n2017',
legend.hist = T) +

tm_borders(alpha = 0.2) +
tm_layout(main.title = 'Car crash mortality in Georgia',

legend.outside = T,
inner.margins = c(0.1, 0.02, 0.02, 0.1)) +

tm_compass(type = '4star',
size = 2,
position = c('right', 'top')) +

tm_scale_bar(position = c('left', 'bottom')) +
tm_credits('Source: Georgia OASIS') +
tm_grid(alpha = 0.2)
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Car crash mortality in Georgia

−85 −84 −83 −82 −81

30.0

30.5

31.0

31.5

32.0

32.5

33.0

33.5

34.0

34.5

35.0

0 50 100 150 km Source: Georgia OASIS

N Deaths per 100,000, 
2017

0.0 to 11.4
11.4 to 17.6
17.6 to 23.9
23.9 to 32.3
32.3 to 115.2

0

5

10

15

20

25

18.4.4 Change the global style of a map

tmap has several pre-defined ‘styles’ or ‘themes’ for maps. While this may not
be the strategy you chose for most epidemiologic maps, it is a quick and easy
way to achieve a certain ‘feel’ from a map. A style simply means a set of
options that are preset (a user can still modify individual elements) to produce
a particular look. To see examples of the same global map produced using each
of ten different styles, type tmap_style_catalog() into the console. On my
computer it took approximately 60-90 seconds to produce ten separate .png
files in a sub-folder of my project. You can browse through those to see how
styles differ. Two examples are shown here:

18.5 Making small-multiple maps

Small multiples refers to the production of multiple maps to be presented as a
set. We often desire small multiples as a way to visually compare two or more
features when it is not easy to put them both on the same map.
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Figure 18.1: tmap style: Natural

Figure 18.2: tmap style: Classic

There are three ways to prepare small multiples in tmap. As you look at these,
notice how they differ with respect to the number of legends produced, the range
of the legends, and the content or flexibility of customization within and between
map panels.

18.5.1 Small multiples as a vector of variables

To plot side-by-side maps of two or more variables from the same spatial object,
simply call a vector of variable names when specifying the layer or symboliza-
tion.

tm_shape(mvc) +
tm_fill(c('MVCRATE_05', 'MVCRATE_17'),

palette = 'Purples',
style = 'quantile',
title = c('Mortality, 2005', 'Mortality, 2017')) +

tm_borders() +
tm_layout(inner.margins = c(0.02, 0.02, 0.1, 0.2),

legend.position = c('right', 'top'))
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Mortality, 2005
0.00 to 12.76
12.76 to 18.79
18.79 to 25.71
25.71 to 36.15
36.15 to 66.34

Mortality, 2017
0.0 to 11.4
11.4 to 17.6
17.6 to 23.9
23.9 to 32.3
32.3 to 115.2

This strategy produced a single map for each variable listed in the
vector, and each map has its own unique legend, determined by
the breaks of the data for that variable.

18.5.2 Small multiples with facets

Facet plotting is something common in the package ggplot2. It refers to the
production of two or more plot figures stratified by a ‘grouping’ variable. Typi-
cally in facet plots from ggplot2, the scale of the 𝑥 and 𝑦 axis are held constant
across the set of plots so that the values plotted are readily comparable.

In tmap, facet plotting means creating multiple map plots that are distinguished
by slicing or stratifying the spatial units along some by group. Faceting can be
useful for highlighting patterns among different sub-groups in your spatial data.
Unlike ggplot2, the scale of the legend and bounds of the x, y coordinate extent
are not enforced to be the same across all panel maps by default. Instead the
min/max x, y coordinates can vary according to the scope of content in each
panel (e.g. by default, free.coords = T).
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By default the range and cut-points of the legend are held constant across maps
(e.g. a single legend is produced to represent the data in all maps).

If you would like to force consistency between panels (e.g. either for better
contextualization or for comparability), that can be specified. Argument
free.coords = FALSE (e.g. each map should NOT have its own min/max x,
y coordinate range) and free.scale=FALSE (e.g. each map should NOT have
its own spatial scale or ‘zoom’ appropriate to the contents of that panel).

Here is a strange facet map produced by stratifying on the NCHS urban/rural
six-level categorization scheme. First I have code for what happens by default,
and then with setting the free.coords and free.scales to FALSE. You can
see that by default, each map frame zooms to maximize the selected object, so
the scale is different in each. In contrast when forced to maintain a constant
scale it is easier to see the relative size and locations of each subset.

# Basic facet map with defaults
tm_shape(mvc) +
tm_fill('MVCRATE_17') +
tm_borders() +
tm_facets(by = 'nchs_code')
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Large central metro Large fringe metro Medium metro

Micropolitan Non−core Small metro

MVCRATE_17
0 to 20
20 to 40
40 to 60
60 to 80
80 to 100
100 to 120

# With facet parameters set to FALSE
tm_shape(mvc) +
tm_fill('MVCRATE_17') +
tm_borders() +
tm_facets(by = 'nchs_code', free.coords = FALSE, free.scales = FALSE)
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Large central metro Large fringe metro Medium metro

Micropolitan Non−core Small metro

MVCRATE_17
0 to 20
20 to 40
40 to 60
60 to 80
80 to 100
100 to 120

18.5.3 Facets for time-series

How small multiples from vector-of-variables and facets differ:
One point, which might not be obvious at first, that distinguishes these first two
methods of small multiple map productions is how they use data to separate
maps. Notice that the first option above (supplying a vector of variables to plot
using the c() call within tm_fill() for example) is good for mapping things
that are wide in your data. In other words it maps separate columns as
different maps.
In contrast the tm_facets() creates separate maps by stratifying rows of data.
In other words it is good for mapping things that are long in your data. If
you are not used to the idea of long versus wide data this might seem confusing,
but its a relatively common distinction in data handling.
An extension of this idea is that if you wanted to map a time-series (e.g. maps
of disease rates each year over a series of years), you could create a long dataset
by year. Imagine a dataset with a row of data for every county in Year 1;
then a separate dataset with a row of data for every county in Year 2; and so
on. By stacking these datasets your dataset becomes as long as the number of
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geographic units × the number of years. You could not do this easily in ArcGIS,
but it is perfectly allowable with sf class spatial objects. When plotting, simply
use tm_facets() with by = YEAR to produce your series.

Here is an example of taking our current ‘wide’ dataset (e.g. we currently have
3 years in separate columns), and making it a long dataset (e.g. a single column
for MVCRATE, and a separate column for year to distinguish which year-rate we
are talking about). Then we produce time-series faceted maps. In this case we
use the tidy functionality of the pivot_* verbs (e.g. read more about use of
pivot verbs here)

nrow(mvc) # N = 159 rows corresponds to N=159 Georgia counties

## [1] 159

mvc_long <- mvc %>%
select(GEOID, NAME, MVCRATE_05, MVCRATE_14, MVCRATE_17) %>%
as_tibble() %>%
pivot_longer(cols = starts_with("MVCRATE"),

names_to = c(".value", "year"),
values_to = "mvc_rate",
names_sep = "_") %>%

mutate(year = 2000 + as.numeric(year)) %>%
st_as_sf()

nrow(mvc_long) # N =477 rows corresponds to 3 years each for N =159 counties

## [1] 477

Now, plot that long sf object ignoring the fact that there are three rows of data
for every county. Can you tell what happens?

# This is the WRONG way to plot a long dataset!
tm_shape(mvc_long) +
tm_fill('MVCRATE') +
tm_borders()
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MVCRATE
0 to 20
20 to 40
40 to 60
60 to 80
80 to 100
100 to 120

# If you want a single map from a long dataset, use the subset() function ...
tm_shape(subset(mvc_long, year == 2017)) +
tm_fill('MVCRATE') +
tm_borders()
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MVCRATE
0 to 20
20 to 40
40 to 60
60 to 80
80 to 100
100 to 120

Notice how both maps above are the same? Try changing the YEAR == 2017
to a different year. You can see that when we ignored the long format, tmap
essentially plotted the Georgia counties 3 times, with the last layer (e.g. 2017)
being on top and thus the one we see. So beware…

Now let’s take advantage of the long format dataset to facet or sub-divide the
dataset into separate maps as delineated by the year variable:

tm_shape(mvc_long) +
tm_fill('MVCRATE') +
tm_borders() +

tm_facets(by = 'year', ncol = 1)
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18.6 Small multiples with tmap_arrange()

The third way to make small multiples, and one that gives maximum control
over each separate panel, is to create them one at a time, and then combining
them into a panel using the function tmap_arrange(). The notable difference
here is that we name each map object as we create it, and then provide the list
of names to tmap_arrange().

m1 <- tm_shape(mvc) +
tm_fill('MVCRATE_05') +
tm_borders()

m2 <- tm_shape(trauma) +
tm_symbols(shape = 'LEVEL',

col = 'LEVEL')

tmap_arrange(m1, m2)
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MVCRATE_05
0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70

LEVEL
Level I
Level II
Level III

LEVEL
Level I
Level II
Level III

For this example I used two totally different shape objects to illustrate the
point that tmap_arrange() is particularly good for combining things that are
not simply wide or long subsets of a single dataset. This approach is also good
if you are taking a totally different approach to symbolizing two variables in the
same dataset, as it doesn’t assume you are trying to keep anything the same.

18.7 Summarizing small multiples

Small multiples are not a common visualization in GIS software like ArcGIS. To
do small multiples there you need to create multiple data frames and manipulate
them in Layout view; it is often difficult to get consistent scales, legends, or
coordinates.

In R, the idea of faceting is quite common and has much potential for spatial
epidemiology, which is why it is emphasized here. Below I summarize some of the
overarching differences among the three approaches above for future reference.
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Feature Vectors c() of variables tm_facets() tmap_arrange()

Approach Different map for
different
columns/variables

Different map
for different
rows/subsets

Completely
independent map
images

Scale or
legend

Separate legend for each
variable

Choose either
single scale
across panels,
or separate

Each panel
independent

Coordinates Same for all variables
from same sf object

Option of same
or different for
each panel

Each panel
independent

Typical
use

Quickly view set of
variables

Highlight
spatial
sub-regions

Custom creation of
figure

18.8 Saving maps

Saving maps for use in other programs or applications is important. Images can
be saved in the same output formats available in other R image functions. In
other words we can save files as .png, .pdf, .jpg, .tiff, etc.

A quick way to do is to use the export button from the plot pane in R studio.

Recall that the way any graphic in R looks is shaped in part by the active
graphic device. Your screen plot pane is the default graphic device and things
are arranged to look good on your screen. However when you save to a different
graphic device (e.g. a jpg device), things might look different. So sometimes you
have to do some trial-and-error troubleshooting with the width, height, and dpi
options.

To specify the save via code, rather than the export button (which is a good idea
in terms of reproducible code!) use tmap_save(). To save the final two-panel
map I created from the previous step I could do this:

# First make it an object by giving it a name, m3
m3 <- tmap_arrange(m1, m2)

tmap_save(m3, filename = 'mvc_maps.png')

You should now have the skills to make a wide variety of maps in R. To fine-
tune how tmap works and to customize for each desired purpose, you will likely
spend a lot of time looking at the help documentation or other online resources.
While sometimes tedious, this process of figuring out how to make just the map
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you want is valuable. With time you will be able to create sophisticated maps
quickly and efficiently.
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Chapter 19

Using kernel density
estimates to quantify an
exposure for Spatial Epi

As discussed in Disease Mapping IV, kernel density estimation can be used
to map diseases (e.g. outcomes), but it can also be used to create continuous
surfaces of an epidemiologic exposure or covariate. If you create a continuous ge-
ographically weighted surface of an exposure, you might wonder how to extract
or join it to polygon or point data for further analysis.

GOAL: The purpose of this appendix is to take an exposure that is
defined by points (e.g. locations of power plants, health clinics, or
waste sites), and to connect it to an sf data frame that has outcome
(e.g. aggregated to a polygon) for further analysis.

19.1 Prepare the exposure surface

This tutorial assumes you have data as a points object. Recall that if you
retrieved data with latitude and longitude as numbers in columns, you can use
sf tools to create an spatial points object.

19.1.1 Step 1.

Because we are doing kernel density on points, we will use the sparr package
which requires that our data get converted from sf to the older sp

439
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# df_sf is an sf object where each row is a point feature representing the location of an FQHC health care clinic

# This converts sf to sp
df_sp <- df_sf %>% as("Spatial")

19.1.2 Step 2.

Create an observation window (owin) that defines the outer bounds of the study
area. NOTE: the point dataset with the exposure and the polygon representing
the study area must be in the same CRS projection.

In the code below, the object study_area is a polygon defining the outer bounds
of the included study area. This is akin to the county boundary we used in
Disease Mapping IV.

# Create an observation window within which the kernel density estimation will be constrained
study_owin <- maptools::as.owin.SpatialPolygons(study_area)

19.1.3 Step 3.

Now follow the steps from Disease Mapping IV (and the corresponding lab) to
create a ppp object and then create a kernel density. Finally, you will convert
your kernel density to a raster object.

What does this kernel density represent?
The interpretation of the resulting surface depends on what data
you are analyzing. Imagine it is points representing Federally
Qualified Health Centers (FQHCs). By converting these discrete
locations into a kernel density surface, you will be quantifying the
average density of FQHCs per square unit area (e.g. per square
km).
Therefore, the meaning of each raster grid value is in fact the
density in the vicinity of that particular grid cell. And the “vicin-
ity” is defined by the kernel bandwidth.

Here we create the ppp object:

# Create the birth ppp object
fqhc_ppp <- ppp(x = st_coordinates(df_sp)[, 1],
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y = st_coordinates(df_sp)[, 2],
window = study_owin)

In the code below, we use a fixed bandwidth of 5km (note that h0=5000 only
corresponds to 5km if the projection unit is in square meters). Note that you
could use any of the bandwidth diagnostics, or use adaptive band-
widths in this setting, just as we did for Disease Mapping IV.

Density or Intensity?
Remember, we had some discussion in Disease Mapping IV about
the distinction between “density” and “intensity”. The “intensity”
is the ratio of units (e.g. FQHCs int his case) per area (e.g. per
square km). A true “density” is the intensity at one location
relative to all of the study area. That means that the “density”
will always sum to 1 across the study area (e.g. it is a formal
statistical probability density).
When we are creating a surface of an exposure, we usually want
the units to be meaningful. Thus, the intensity is more relevant
as it tells us how many units there are in space. The code below
sets density=FALSE to indicate this preference.

fqhc_kde <- bivariate.density(pp = fqhc_ppp,
h0 = 5000,
density = FALSE,
edge = 'diggle')

Now we can take the img object that was output from bivariate.density()
and convert it to a raster format. Recall that because the crs() coordinate
reference information gets stripped away in this process, we simply need to
re-define it.

fqhc_kde_raster <- raster(fqhc_kde$z)
crs(fqhc_kde_raster) <- "EPSG:5070"

If you plot the resulting raster, the values in the legend will be quite small,
because for example, they are telling us how many FQHCs there are in every
square meter!! Obviously there are not many. But if you multiply by 1, 000, 000,
the values will be the number of FQHCs per square kilometer. That still might
be small so you could even multiply by a bigger number to make it the number
of FQHCs per 10 or per 100 square km.
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19.1.4 Step 4.

Everything up until now has been very similar to Disease Mapping IV. But
now we want to extract the values. In other words we want to know what the
average continuous FQHC intensity is at some given point where we measured
a health outcome. If our health outcomes are aggregated to polygons (e.g. rates
per census tract or county), we might choose to use the centroid of that polygon
as the place to extract. If, on the other hand, the points were the actual street
address of individuals, we would use those locations for extraction. In other
words, the goal is to extract from the raster to specific points.

Here the target outcome unit of analysis is a polygon named tracts-ms. For
extraction we want it to be points, and so we will use the centroid of every tract
as the point of reference.

df_tract_point <- st_centroid(df_tracts_ms)

Our goal now is to extract values from a raster (e.g. to merge or join the
point to the raster and connect the raster cell value undelying the point). The
point object needs to be class sp so if it is not, convert it first (e.g. d_sp <-
df_tract_point %>% as("Spatial")).

Now use the extract() function from the raster package:

exposure_value <- raster::extract(fqhc_kde_raster, df_tract_point)

The code above specifies the raster first, and then the object containing the
point information second. This should produce a vector with as many values
as there were points in df_tract_point. Now you simply join them onto your
analytic dataset that has the outcome to bring the exposure and the outcome
together!

tracts_ms$fqhc_inensity <- exposure_value
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